‘AD-A124 448 R LOCRL COMPUTE| NETHORK IHPLEHENTRTION USING ETHERNET 1/2
ILLINOIS UNIV AT URBANR COORDINATED SCIENCE LRB
LILJA RUG 82 R-946 N@@839-80-C-8556

UNCLASSIFIED F/G 972

Py

33332
d343

J3aa m_ummuu,m

m of

e ———
s —
—
——

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i
s Bk

I

. cw e e
Aada .t

L)
Dt

., - -
Lt Y N, W W T

g vy = T

=
=

DA124448

- e LA S et o

REPORT R-946 - AUGUST, 1982

= WCOORDINATED SCIENCE LABORATORY

A LOCAL COMPUTER NETWORK
IMPLEMENTATION USING ETHERNET

83 02 015 qoy

e

~

UILU-ENG 82-2212 @]

A

-

-

P S A Padiabed L T N W e e e DAt i A S At Tt M APEL IR S A e e AP e i
Al A MRSt C . Sl A S WY . PR .

UNCLASSIFIED
'SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF e N RM
‘. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
1744121‘$ayj’
4. TITLE (and Subtitle) 3. TYPE QF REPOART & PERIOD COVERED
A LOCAL COMPUTER NETWORK IMPLEMENTATION Technical Report
USING ETHERNET 6. PERFORMING ORG. REPORT NUMBER
R-946; UILU-ENG 82-2212
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

David John Lilja US NAVY NO0039-80-C-0556

. PEAFORMING ORGANIZAT! € 10. PROGRAM ELEMENT, PROJECT, TASK
9. PEAFORMING ORGANIZATION NAME AND ADDRESS . ARER & WORLK UNIT NUMBERS
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

11. CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT DATE
August, 1982
VHSIC - 13. nuuaeen OF PAGES

[74. MONITORING AGENCY NAME & ADORESS(i{ ditfferent (rom Controlling Oftice) 18. SECURITY CLASS. (of this report)
Unclassified

15a. DECLASSIFICATION/ DOWNGRADRING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

10. SUPPLEMENTARY NOTES

19. KEY WORDS (Caontinue on reverae side il y and identily by block number)

Local networks
Ethernet

20. ASSTAACT /Continue on reverse side {f necessary and identify by block number)

An Ethernet 1s used to connect an HP 3000 computer with a VAX 11/780
computer to allow the transfer of files from one computer to the other.
A user logs in on the VAX computer and uses a one-line command to send a
file to or retrieve a file from the HP 3000 computer. Files are transferred
between the user's directory on the VAX and either a specified directory or
a public "network" directory on the HP 3000. The file transfer system uses
, a scheme of positive acknowledgment with retransmission to prevent transmission
- errors from corrupting the file.

po—
.
‘e

2
r DD ,(3%'n 1473 ,, UNCLASSIFIED

i ' SECURITY CLASSIFICATION OF THIS PAGE ‘When Dere Enterea)

DRI Lo e T . . N - : -
.y bl - . - e domes e PSP TP W VP SO S PP -4-_L1A‘_‘i

...
.............................

UILU-ENG 82-2212

A LOCAL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET

by
David John Lilja

This work was supported in part by the General Electric
Fellowship in Electrical Engineering and in part by VHSIC under
Grant US NAVY N00039-80-C-0556.

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

- —— TR TR

- Approved for public release. Distribution unlimited.

S “Aessustion For

IT!S oAkl

TIe 148

U tameuncad O
Juetification ol

By
“!_1:'_%?1\0'.100/ N

Availedility Codes
Avatl and/or

. 2 mit Speoial

e M s, el lm . Al -‘

'.-o-‘

..................

.
.
.
.
.
-

A LOCAL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET

BY
DAVID JOHN LILJA

B.S., Iowa State University of Science and Technology, 1981

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1982

IUrbana. Illinois

..

iii

A LOCAL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET
David John Lilja, M.S.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1982
Advisor: Professor Edward S. Davidson

ABSTRACT

An Ethernet is used to connect an HP 3000 computer with a VAX

~ 11/780 computer to allow the transfer of files from one computer to the
other. A user logs in on the VAX computer and uses a one line command

to send a file to or retrieve a file from the HP 3000 computer. Files

B o i san e pn
o P
e P .

are transferred between the user's directory on the VAX and either a

ey

i specified directory or a public "network" directory on the HP 3000. The

v are 2 2y 8
’

file transfer system uses a scheme of positive acknowledgement with

retransmission to prevent transmission errors from corrupting the file.

T T

-y

...............................

.....

.....................

................................

iv

ACKNOWLEDGEMENT

I would like to thank my thesis adviser, Professor Edward S. David-
son, for his help and advice in preparing this thesis. Also deserving
of thanks are the following people: Larry Hanes and Dick Norton for
helping me to understand the VAX, Bill Rogers for his help in taming the
HP 3000, Howard Pdllard for being able to answer an endless barrage of
questions, Steve Yates for helping me maintain my sanity through the
entire process, and my parents for their continued support and

encouragement throughout my academic life.

) e -

-
i

.'. - lii I.' g |

PR

T 18 .

Appendix
Appendix
Appendix
Appendix
Appendix

NI RN
s roT o

1.1.
1.2.

2.1.

4.1.
uCZQ
u.3.

= s

4.
.5.
.6.

5.1 L]

1.
2.
3.
4.
5.

TABLE OF CONTENTS

1. INTRODUCTION S 8000000008 0C0000000000000000800000600808s00cabdsossscoe

Ethel‘n‘t DGSCription 04 0000000000000 c008 00000000 OS
LQVQIS Of ProtocO]. ® 900000 +8000080000 0000000000000 00

2. HOST TO CONTROLLER COWNICATION 0 00000 00000000000 CIIPOIOIOSIOIIICSTOITTDE

General Host/Controller Communication .ccceeccevscss
Using the VAX 11/780 as @ HOSt cceevcevcvsccoccannsne
Using the HP 3000 as @ HOSt ccecevvcocvocascnsccscsne
The PACKET Program .ecceocecescescscscsacscacsccccaccnssasns

TRANSFER PROTOCOL ® 0000 0PSB IPSEPC0ORPSESIRISEOISEOSERQRIPOSTOIBTTCEDS
Packet Typés and Fomt ® 06 0000000000000 0B00cNNRLTYTS
File Tl‘anSfePS 9 900 0GP CN 000N PSCPRSCOCRSESICEOEIEBTOETBTITOETSDS

4, COMMUNICATION INITIATION AND THE USER INTERFACE .covevesccanss

System Organization .eeeccscceccscansscccassensccanes
Fiie Transfers From the VAX to the HP 3000 ..ccecese
File Transfers From the HP 3C00 to the VAX ...cccnen
The Network Daemoncscceesecaccescnscscscesssccsse
System Error CodeS ...cetvesccecsesscvccscssasesnncae
Packet Size for File Transfers ..cceccececsccccsccecs

5. CONCLUSION S 0PSRN0 OOEPPEOT IR0 T0RIBBERSOVRSRNTOPIERIPONLEERQREETIOTETTDN

Suggestions for Improvementcccceevecavccccasccs

The PACKET program for the VAXcccecececesesances
The PACKET program for the HP 3000 .c.oeceessessccsces
The file program for the VAX ..cceececcccccccosrsanss
The network daemon for the HP 3000 ..ccccceevecsanane
Listing of STARTNET.LILJA.SYS ccccoevccancesasssncses

REFERENCES @000 0000000200000 000000000000 0600080 00006 C0sPs0s00ROCESIDOIESGE

PRI PO W U JPUS T S JUPUS Wus VW WP T ST WP SPTIIP W e aahacs .

...
...

Sl
wl

A
4

AR

;
;
]
"
M

e

vi " 1
LIST OF TABLES

Table 10 contI‘OIIQP comnd Bytes (AR RN R RN ENNE RN NN ERNNNERENNI NI NN 8

Table 2. statua Byte DeSCription @8 9000900000000 0000sv00000s00ene 8

Table 3. Packet Type! 2 000600600000¢000000000000%00000000000t00s000s0 22

T&ble u. Systeu E!‘N“ COGQS 0000000000000 s0000000000000000000esse 35 T

r'ﬂ - ~'-1_"-"-’.'.‘.7".~.7-.~.'.~,\- "'A".".'-.'..".'.. IR --..“ ST e T T LTSS T e T
AAT et o SN . e . e e e - . s e e T N0l

vii
! ‘ LIST OF FIGURES

Figure 1. Controller to HP 3000 connectionceeeeceseccvecascs 17

Fisure 2' Packet rormat ® 000 GO T PP OE ORGP OO OO SIS PNOLOE OIS TIEPFPEPOEIO R 21
L Figure 3. An example of the file transfer protocol ..eceesvecsecs 24

Figure 4. System organization for file transferscccsceeecces 29

TP R ER B T TIIE o remm—— v = = o

NN

- - - - - ' = : - T . T gl . " - . - - - . T o e T EE R . P .
s . - " " . - . . - - o - - . . . - . .
-~ E - S S . R - 0 . - P " B " - - ~ - » P - - - 2 ’ [- 12 PPy
talatafet il dnltaintalliel e b ittt ituncia eaionbaninddmiitinidhtohansuuhioband b otointub i,

.........................
..

1. INTRODUCTION

Over the past several years there has been a great deal of interest
in interconnecting many geographically distributed computer systems
using computer networks. These networks ranges from long-haul networks
connecting computers separated by thousands of miles to multiprocessor
computers which are separated by less than a few meters. Local computer
networks are generally considered to be those with separations on the
order of a few kilometers or less and are usually contained within one
building and used by one organization[1]. Local networks are attractive
because they allow expensive system resources, such as printers and
secondary storage devices, to be shared among several independent com-
puter systems. With the rise in popularity of personal computers, a
great deal of work has been done on local networks to connect these

small systems and produce some standards[2].

This thesis describes an implementation of a local computer network
that allows the transfer of files from one of the host computers on the
network to another host. This local network uses an Ethernet to inter-
connect a VAX 11/780 computer and a Hewlett-Packard HP 3000 computer.
The system allows'a user to log in on the VAX and use a simple one line
command to transfer any file to the HP 3000 or receive any file from the
HP 3000.

1.1. Etherpet Descriotion

Ethernet is a registered trademark of the Xerox Corporation used to

refer to a particular method of implementing a local computer net-

v e o= =

...........

work[3]. This Ethernet employs packet broadcasting with several sta-
tions connected together by a common transmission medium. Every station
on the network can receive every transmission of every other station. A
station is any device, such as a computer or a printer, that can commun-
jcate on the network. The Ethernet concept is predicated on the assump-
tion that computer traffic is bursty. Thus several stations can effi- =
ciently share the common transmission medium using time-division multi-

plexing. This concept of packet broadcasting originated with the Aloha

1 A

Network which was developed at the University of Hawaii to connect
together several computer sites with radio[4]. Ethernet is classified
as a "carrier-sense multipie access with collision detection” (CsSMA/CD)
network which means that multiple stations are able to sense the state
of the medium before transmission and also detect if another station 1is

causing interference. T

The Ethernet has a central interconnection medium witia network con-

trol distributed among the stations. This interconnection medium is

completely passive and is usually a standard coaxial cable, referred to
by the developers at Xerox as the "ether." The name "ether" is from the
historical "luminiferous ether" through which electromagnetic radiation
was once thought to propagate. The topology of this cable must be an
unrooted tree. The tree requirement prevents multiple paths between any

two stations on the cable so no transmitted packet can interfere with

RIS A1 AL LI & 29
L

itself. It is unrooted in the sense that the cable can be extended in

RY P+

any direction by simply tapping into the cable at any point. The ends

of the cable must be properly terminated with a passive resistance whose

D I8 <SR

§ !! value is the same as the nominal cable impedance to prevent echoes and

reflections.

AT

i . Access to the network is shared among the stations on a contention
basis. When a station wants to transmit a packet, it first listens to

b the ether to see if it is already in use by another station. If it is

s aam g

in use, tﬁe new station simply waits until the other packet is finished
transmitting. When the ether is clear, the station waiting to transmit

seizes the ether and begins transmitting its packet. This sending sta-

£ BEdli - L er

e
o
X

tion monitors its own transmission to make sure that it is not colliding
with another station try.ng to transmit at the same time. If a colli-
sion is detected, each station aborts its transmission and waits a ran-
I’ dom period of time before attempting to retransmit. Once the station is
able to seize the ether without a collision, it transmits its entire

packet.

] Each station on the network is assigned a unique eight-bit station
h address that is used by the other stations to specify the desired desti-

nation of a packet. Using eight bits for the address limits the number

_ of stations on the network to 256. In practice, most Ethernets limit
the number of stations to 255 and use one of the addresses, usually the

zero address, as a broadcast address. Normally a station examines the

destination address of every packet on the ether, but it will respond
only to its own address or to the broadcast address. Broadcast is use~
. ful for sending all of the stations the same packet, such as time of day

! information or a system message. In most Ethernet systems, broadcast

messages are not acknowledged by the individual stations.

~~~~~~~~~~~~

...............

Ky

T

Reliability in Ethernet is based on simplicity of design. By hav-
ing a passive central interconnect and distributed control, if one sta-
tion should go down for some reason, it can be disconnected with no
effect on the rest of the network, except, of course, that the services
provided by that station will no longer be available. Due to the sim-
plicity of this system, packets are correctly delivered to their desti-
nations with only a high probability of success. Some packets will be
lost due to collisions with other packets, interference from electromag-
netic noise, and being discarded by the intended receiver. Error con-
trol for packet transmissions must be dealt with at a higher level and

is not a concern of this low-level Ethernet protocol.

1.2. Levels of Protocol

As with most complex systems, this computer network is best
developed at several different levels with each level being logically
distinct from the others. There are basically four different levels of
protocol used to provide eommuniéatioi between the two computers on this
network. The lowest level, which is the Ethﬁrnet protocol described
above, 1is implemented in a microprocessor based controller, with one
controller required for each host. The remaining three levels of proto-
col are implemented entirely in software on the host computers and

represent the main work of this thesis.

The second level of protocol, the host to controller communication
protocol, 1is concerned with how each host sends commands to the slave
controller and how the host receives packets from the Ethernet that have

been buffered within the controller. The next level of protocol is the

a A o PN WA L NP P SR PR U S N PR IS SE NN SPE. I ULIP UL U0V Wi SUA RIS . W




..,‘. _,...__,A.,.A,,_..
ST T

YT Y evavw
A ol

:
5
¢
:
e
h
r
{
:

v

L aiiiaa Sl 2 e i e Shefes St S At Reg S0 e J AR 2t i b S SN S N

file transfer protocol which is used to effect the actual transfer of
files between the two host computers and provides the error control
mechanism that is missing from the lower-level Ethernet protocol. The
highest 1level of protocol used in this network communicates with the
user to allow an easy mechanism to transfer files. Hithin‘this level is
a sub-protocol that initiates communication between the two host comput-
ers before a file can be transferred. When all of these levels are put
together, a user can simply log in on the VAX and, using a simple com-

mand, can transfer files.to and receive files from the HP 3000.

PR A — SR S G S WD W AT VR S . o . N ——— q NN W U DU VP .

- Dohanadh s

ad




. N 4ol A8 ko sl 00 00 S 4
,.T TN

e

RO L]
S e

*. . %,

v o R nael wens Bas as ma ane e sevs Ama_gew i Slh g St Aadh gmwe fund 4 e S Mt St e i e

2. HOST IO CONTROLLER COMMUNICATION

The Ethernet concept requires each machine on the network to have
an 1intelligent controller to interface with the ether. This controller
can be the host machine itself, but it is desirable to have a separate
device dedicated to the network connection. This prevents the host from
being burdened with the low-level protocols of the network and allows it

to concentrate on higher-level protocols and user processes.

This separation of host and network controller requires that sonme
communication link exist between these two devices. This link could use
a dedicated parallel input/output port or a simple serial interface.
Also required is the existence of some protocol for communication
between the two devices. The complexity of this brotocol will vary
depending upon the computational power and the relative speeds of the

host and the controller.

2.1. Geperal Host/Controller Communication

The local network described in this thesis uses a network con-
troller designed and built by Joseph Ayala at the Coordinated Science
Laboratory(5]. This controller uses a microprocessor for its basic
intelligence and a specially designed board for the bit transfers on the
ether. The controller is connected to the host computer with a standard
RS232 serial interface line and appears to the host as a terminal. By
using this standard interface, the controller is very portable and can
be easily moved to another host with little or no modification. The

penalty for this portability is the relatively slow speed of the serial

MEP Y L) - SO W ALY VO o S . h o Y . VY W Ao . M WA S W S

PPN




™ G0Res

>

NCee]
©

g

&
e
b -
=
I;; :
L&

S

—_— e e T W TR T W T T W
P AP e e TN T

- .
-

transfers over the communication link, which in this case is limited to

9600 baud.

The controller is configured in a ™null modem®™ fashion, thereby
allowing it to be connected directly to the terminal ports of most com-
puters without swapping the transmit and receive wires. The controller
requires the DSR (data set ready) signal from the host.to be active, but
it can be used with three wire systems by connecting pins 6 and 20
together on the 25-pin hast-to-controller EIA connector. This jumper
connects the controller's DTR (data terminal ready) signal to its DSR
connection and thus eliminates the need for the host to supply the DSR

signal.

The communication protocol designed into this controller requires
the host to initiate all communication by sending a single byte command
with the controller always responding by returning two bytes to the
host. This initiation responsibility requires a program to be running
on the host to communicate with the controller. That is, the controller
does not functionally 1look Just 1like a terminal to the host, but

requires a special intelligent process to be running on the host.

Within this protocol, there are four basic commands that the host

- can issue to the controller. These commands are shown in Table 1. The

enquiry command (ENQ) causes the controller to return its'station
address byte and its current status byte. The station address is the

unique eight bit network address to which the controller will respond

r

when there is a packet sent on the ether. The status byte indicatesa the

current status of the controller itself. The bit format of the status

b LY Ul I VDY Sy - - B

PR Y. P



"v.'. ) .’..“:‘Y‘:‘ww fortony PRI A
. LY .

T

Table 1. Controller Command Bytes

Command Hex Code Description
ENQ 05 Enquire
SEND 1 Send a packet
SOR o1t Start of header
ACK 06 Acknowledgement
REC 12 Receive a packet
NAK 15 Negative acknowledgement
CAN 18 Cancel last receive request

byte is shown i Table 2. This command is useful for initializing the
station address in the host's software and for checking the status of
the controller. Also, since the controller will not respond if it is
not turned on and operating, ENQ can be used to test this condition.
Once set, the status bits can only be reset by a manual reset of the
controller. This fact 1limits the usefulness of ENQ. The software

developed in this research actually uses ENQ only to initialize the sta-

Table 2. Status Byte Description

Bit no. Meaning when logic 1

Always 0.

Transmit aborted due to excess collisions,

Receive aborted due to "cancel™ command.

Command from host not recognized.

Receiver overrun - error on communication link to host.
Checksum error in the received packet.

Received packet did not contain multiple of 8 bits.
Received packet exceeded 1024 bytes in length.

~_NoOOMmEWN=0

. . 2, e . . - - - . S B R
PIRY Voltr U S ULIE W SV WL, SO I S LIS W Y O PR R “al L el W PR S W W P LIPS

Py

I

Ak

JRIR

o dd




P S 2 GRLASAARIR LS gy Adeudrdiae

Y ALY ety

tion address and to teat if the controller is turned on and operating.

The send command (SEND) prepares the controller to send a packet
over the net. The packets can be a minimum of two bytes in length (for
the source and destination addresses), and a maximum of 1024 bytes (lim-
ited by the size of the buffer within the controller). The sending con-
troller hardware appends a two byte CRC (cyclic redundancy code) check-
sum to the packet, but this is unavuilable to the host. After receiving
a SEND byte, the controller responds with a "start-of-header" byte (SOH)
and a null byte (to pad its response to the standard two bytes). The
host tken sends the two byte length of its packet, low byte first, and
waits for an acknowledgement byte (ACK). When the ACK arrives, the host
sends its eantire packet to the controller which buffers it and transmits
it when the ether is clear. Note that the SEND command is required once

for each packet to be sent.

To receive a packet from the net, the host must first issue the
receive (REC) command. This causes the controller to listen to the
ether, waiting for a packet with its station address or the broadcast
station address. When a packet directed to it is received, the con-
troller reads the packet into its buffer and informs the host with
either an acknowledgement (ACK), if the packet was feceived correctly,
or a negative acknowledgement (NAK), if the packet was damaged. The
host can then either read the packet or cancel the receive request. To
read the packet, the host sends the SOH byte to the controller, which
then responds with the two byte length, low byte first. The host fol-

lows with an ACK byte causing the controller to send the entire packet

™ WP UL W QU g SR s AP AP SRS S DL TP DU P PP - et camadioooss - Boiialin—salh




0 v‘lw‘*‘-I

T

La

NS B S ERENCLINEAEN

10

to the host and return to its idle state waiting for the next command.
If inatead the host wants to cancel the receive, it can send the con-
troller a cancel command (CAN) which returns the controller to its nor-
mal idle state and makes the received packet unavailable to the host.
Note that the REC command must be issued once before each packet the

host expects to receive.

This simple protocol must be strictly followed for proper transfers
to take place between the host and the controller. Any deviation from
this protocol may confuse the controller and cause it to "™hang" in an

indeterminate state. It then must be reset manually.

2.2. Using the VAX 11/780 as a Host

A VAX computer running under the UNIX timesharing operating system
is used as one of the hosts in this local network. UNIX is written

mainly in the programming language C and allows user programs written in

C to interface directly with the operating'systen[GJ. This capability

allows the user a great deal of flexibility in interfacing nonstandard
devices, such as the network controller, to the computer. UNIX treats
all input/output requests as accesses to a file, specifically, requests
to access terminal ports are treated exactly as requests to read or
write data on disc files. This convention allows one standard interface

between the user's program and the operating system.

As mentioned previously, the controller connects to the host
through a standard terminal port. To access this port, the user program

must open it using the "open” procedure call available in the standard

P - -~ s - D VY 2 A - P W oo Bsits Mo > 2 = A, - =) Te e B N e B i mn B A R oA s




- -

tn . :
. Le .
PSP LI, A

1"

input/output library "<stdio.h>.™[7] This procedure expects as parame-
ters the name of the port and the type of access required. The name is
specified as "/dev/ttyx" where x is the terminal port number to which
the controller is connected, and the access type is the integer 2 which
specifies read/write access. This procedure call returns an integer
which is then used to identify the port in subsequent read/write

requests.

After the port is opened, it must be configured using the "set ter-
minal options® procedure (stty) available in the "<sgtty.h>" library[7].
This procedure allows the user to change default options in the terminal
driver. For the network controller the options are chadged so that the
input and output speeds are set to 9600 baud and the mode is selected as
RAW and ANYP. RAVW means that all characters are passed to and from the
port untouched with no processing done on the characters and no special
characters, such as "break," being recognized. The ANYP flag means that

any parity is allowed, i.e. the parity bit is ignored.

Once the port is opened and configured, the user's program can read
and write to the port using the "read®™ and "write®™ procedures avallable
in the standard C input/output library. These procedures allow the pro-
gram to transfer many bytes at a time from a buffer within the program
to the port and to read many bytes from the port into the program's
buffer. In most cases, single byte transfers are the simplest to imple-
ment and are not much slower than multi-byte transfers since UNIX

already buffers the port transparently to the user.

o e PSS VU VA S I S SR VA . . Som e . S

e




12

¢
A

It should be noted that before the port can be properly configured,
the .uaer must make sure that no other process is running on that port.
Specifically, UNIX normally has a process called "getty" running on each
terminal port{7]. This process initiates the login procedure when the

port 1is used for normal interactive sessions. This "getty"™ process ties ]

up the port and prevents normal access to the controller. Also; since
the network controller is not an interactive terminal, the "getty" pro-

cess will not respond correctly to the controller's protocol. Conse-

quently, the process must be removed by the system management from any
port to which the controller is to be connected. Once this is done, the s

port can be opened and configured as described above. :{

2.3. Using the HP 3000 as a Host

The other host computer used in this local network is a Hewlett-
Packard HP 3000 running the MPE (Multi-Programming Executive) operating
system. Systems programming on the HP 3000 is best accomplished using :?
the Hewlett-Packard language SPL (Systems Programming Language) since it

allows the most direct interface to the operating system[8]. As in the

VAX, the HP 3000 treats all input/output requests as accesses to a file. %

Thus data transfer to and from a terminal port is accomplished in the W

same manner as data transfer to and from a file. ;*
é The software terminal drivers on the HP 3000 are optimized to work E}
Eﬂ with Hewlett-Packard terminals and present a few problems when trying to

interface non-standard devices to the terminal ports. The drivers asso- J

ciate a record size with each terminal which specifies the maximum size

of each transfer between the terminal and the computer. Each 1line is




13

delimited by a carriage return or by this maximum record size. If the
record size of the terminal is specified to be greater than eighty char-
acters, then the driver uses an "enquire-acknowledge®™ protocol for all
transfers to the terminal. This means that the computer will send out
an enquire byte (ENQ) to the terminal before it transfers any informa-
tion. It will then wait for an acknowledgement byte (ACK) indicating
that the terminal is ready. This protocol is necessary to prevent the
computer from overwhelming slow terminals with too much information at
once. Unfortunately, the network controller does not respond correctly

to this protocol.

3

Another problem in the terminal driver is that whenever the com-
puter expects input from the terminal, it sends out an ASCII "DCi" byte.

This is supposed to alert the terminal that it can now send its informa-

tion to the computer. The problem in the network controller is that

L g el o

" this byte is interpreted as the SEND command and sets up the controller

L

to send a packet over the net. Obviously, this is not compatible with

the intended use of this byte by the terminal driver.

o
IR
&t

—_ Both of of these problems must be eliminated before the controller
. can be wused with the HP 3000. One solution would be to reprogram the

microcomputer inside the controller to respond correctly to this proto-

E col, While this could be done relatively easily, it is not a very good
E - solution because the controller would no longer be portable. A better
' solution, described below, is to eliminate both problems and allow the

P user's program to handle its own protocol. This solution was adopted in

this design.

......................................




s
1
J
.

........................................

™S
.

-
o y
= ‘
l':.‘ 14
i
E‘J
The enquire-acknowledge problem is eliminated by specifying the )
record size of the terminal port to be fewer than 80 characters when the 3
port is opened. The "DC1" problem is eliminated by specifying the ter- )
™
minal to be type 18. This terminal type is not documented in the HP .
3000 manuals and the information regarding type 18 terminals was
obtained through the courtesy of the Hewlett-Packard Company. Type 18 i
can be specified by using either the MPE intrinsic procedure FCONTROL to
allocate the terminal to the program as type 18, or by specifying type
18 for the required port in the system configuration table. Using this %
terminal type effectively eliminates the built-in protocol in the termi- .
nal driver. ' -]
Before the controller can be accessed by the user's program, the :
terminal port to which it is connected must be opened using the FOPEN )
intrinsic[9]. The required parameters are a bit string indicating the i
file type, another bit string indicating the access options, an integer ;1

specifying the record size, and the name or logical device number of the

controller's port. This procedure call returns an integer which is then

Y

:! used to identify the file in subsequent accesses. Once the port is
I g
opened, it must be further configured using the FCONTROL intrinsic to -3

select certain options. This intrinsic 1is used to turn off the e

automatic echo of input characters; disable the input timer; disable
block mode transfers (part of the enquire-acknowledge protocol); enable

binary transfers (to pass all eight data bits); and disable the parity,

treating each bit as a valid data bit. Also, the FSETMODE intrinsic J

RO |

must be called to inhibit the automatic carriage return/line feed

R A
TN

L Y

- ~ - .
R LI TR S S T T T e T . . . . . L . ‘»'i
PPN, PRIV 1P T W I S S Ut S S/ Sl WP EPRE ST S e P P R S S-S S s b o ‘ N " A "




W T NN I AN IE o WS NN )
PO B N L T A e e T T D L P R

»
!

15

sequence after each input from the controller. After all of this 1is

done, the controller is ready to be accessed.

The MPE operating system provides two intrinsics to read and write
files - FREAD and FWRITE. Each of these allow the user to specify the
file number, the buffer to be used (this buffer must be supplied within
the user's program), and the number of bytes to be transferred. FWRITE
also allows a carriage control byte to be sent with each transfer. This
should be specified as "$320" which means that no carriage control
should be sent. If the multirecord option was specified in the access
options parameter of the FOPEN call, then the number of bytes
transferred does not have to be fewer than the specified record size.
The read or write will simply transfer as many bytes as are requested in
the procedure call. The multirecord option effectively circumvents the
8C character 1limit set above to avoid the enquire-acknowledge problem.
Packets up to the maximum length allowed by the controller can then be

sent and received by the HP 3000.

The first problem encountered in reading from and writing to the
controller is that the controller responds too quickly. That is, after
a command is sent to the controller, it responds before the program run-
ning on the HP 3000 can execute the read procedure. This problem arises
here aince the computer does not automatically buffer data coming from
terminals unless it is already expecting some form of input. The solu-
tion to this problem is to set up the read request before sending any
commanc . to the controller by specifying the "no-wait I/0 option"™ in the

access options parameter of the FOPEN intrimsic. To execute this




..........

16

intrinsic with this option, however, the program must be put into
"privileged mode™ using the GETPRIVMODE intrinsic. After the FOPEN is
executed, the program can return to its normal mode by executing the i

GETUSERMODE intrinsic.

Now to read and write to the controller, the program must first
execute the FREAD. This will immediately return control to the calling

procedure which should then execute the FWRITE to send the command to

the controller, followed by a call to the IOWAIT intrinsic to finish the
read. The result is that the computer is waiting for the controller's
response even before the command is sent to the controller. The rapid
response is then automatically buffered by the computer to be

transferred to the program via the IOWAIT call.

A problem encountered when using this procedure is that the program

cannot set up a read followed by a write to the same file without an

F intervening call to IOWAIT. An IOWAIT here is improper since no read

?ﬁi data would arrive until the write has been issued. The obvious solution .
Eé is to use two different files, one for read requests and the other for ]
4 write requests. However, MPE will not allow the same terminal port to ]

.,w,.
1@

be referenced by two different files simultaneocusly. The final solution

is to use two different files, each referenced to a physically separate l

terminal port. Unfortunately, now two ports are required at the HP 3000 1
I;f for connecting the Ethernet controller. .
ﬁi To connect the controller to two separate ports, a special connec- i
ﬁci tor has been fabricated. The wiring for this connector is shown in Fig-

P

ure 1. Notice that the transmit data and receive data wires (pins 2 and

) ] a" :..".

PV PR PO LA NP ST oN Soal e IS S . Py - “u PP T Y, 1P DRI . 2L Y b il al P P LI U U S T




Chns an

v e - T

v "y ‘l_"r""l ?;'-. . o l;"l AN i . .

i GRREss . SRR TR

: e e LR ARIE I (oo 4 ISINCRPTN
i f anoe e .
shet . RN .

L e B g At barinee a )
. ’ . . L A ."-
Lt LS RT
RS DR

. . B

) . e

y

Lt ant

v ;'7"" ..l )‘l -‘x'
PRI LD
o e, A
.

Cod

) e v
. | Ml IR
+ AR
at T
- -

CONTROLLER

XMIT
RECV
RTS
CTS
GND
DSR
DTR

Figure 1.

PIN #

HP 3000

"CONT. XMIT."
PIN #

2 DATA IN

7 GND

oo [x

20

"CONT. RECV."
PIN #

3| DATA OUT

7|1 GND

Controller to HP 3000 connection

17




I """ v paciitt Rt Nt st B G AR ABE ot ara L S A e e L0t anud tanih il S et ‘ . Pl S Tieiene oy

T
o b

g

1
4

18
'-1
g

3) are swapped from the controller's connector to the connector on the
computer. This swap is necessary because the terminal connection block EJ
on the HP 3000 is also configured in a null modem fashion. Using this _J
connection arrangement requires the controller to occupy two terminal %
ports, one for sending data to the controller and the other for reading T
B

data from the controller. While this arrangement has its disadvantages,

it seems to be tl.e best solution available without changing the progran

within the controller itself.

2.4. The PACKET Program

As a demonstration of the host to controller communication proto-
col, the program PACKET was written to allow tue transmission of packets

between the two hosts. A version of this program is written in C to run

ﬁv"i‘ > C

on the VAX computer (see Appendix 1) and another version is written in
SPL to run on the HP 3000 computer (see Appendix 2). The program allows

the user to execute all of the commands available to the controller

ﬂ' (i.e. SEND, REC, ENQ, and CAN), and allows packets to be sent from a

q terminal on either machine to a terminal on the other machine.

-

%j When the program is run, it first executes the ENQ command to

if determine if the controller is connected and functioning and to initial-

E ize the station address within the PACKET program. It then prints this

gj address on the terminal and requests the user to supply the station ;*
:i address of the controller on the other machine. After this initializa- .
? tion process is completed, the program prints a menu of available com~ ;h
&E mands and requests the user to enter the desired command.

b,




19

The commands available are "send a packet," "receive a packet,”
"enquire" (executes the enquire command), "cancel” (executes the cancel
command), "help®™ (prints out the list of commands), and "quit." To send
a packet, the user is prompted to enter the packet from the terminal,
terminated by a carriage return. This packet is then sent out over the

net. For each packet that is to be received, however, the destination

controller must be put into the receive mode by using the receive com-
wmand any time before the packet is sent. When the packet is received,
; ;% it is simply displayed on the terminal and discarded. If the controller
5 is not in the receive mode, it does not monitor the ether and all pack-

ets are simply ignored.

While this program is relatively simple, it does demonstrate the

use of the low level host to controller communication protocol and the

feasibility of sending packets on the net. It is also useful as a tool
to debug more sophisticated network protocols by allowing the user to
monitor packet transmissions on the ether. This monitoring is done by
running the PACKET program and repeatedly executing the receive command

for each packet that is to be received. This program forms a basis for

the more complicated programs to folloﬁ.

0w
| AR

A
‘e
l-.

Pt i § i i Rt

""""""""" . - : . [
D A S R P LA P AT P . . . PSSP ST T N S U VUV ST S S SUPRE YRS SUr SO UPww SR S CueY 1




20

3. IHE FILE IRANSFER PROTQCOL

The file transfer protocol builds on the previous host/controller

communication protocol to provide for the orderly transfer of files as a -

sequence of packets. This level of protocol is tolerant of transmission
errors and damaged packets and provides a mechanism for recovering from
u these errors. This mechanism is known as a stop-and-wait protocol with
ﬁ positive acknowledgement and retransmission[1]. What this means is that ¥€
the sender transmits a packet and waits for the receiver to acknowledge
correct reception before sending another. If the receiver never ack- v
nowledges the packet, perhaps because it was damaged or never received,
the sender times out and retransmits the packet. The receiver only ack-

nowledges the correct reception of packets knowing that unacknowledged -

vy
e

packets will be retransmitted by the sender after the time out interval. -
This protocol provides a simple, relatively error-free method for

F transmitting files. :"

3.1. Racket Ivpes and Format

All of the packets used in this protocol have the same format,
shown in Figure 2, which uses a six byte header to provide the informa-
tion required in each packet. The first two bytes of each packet con-
sist of the destination and source addresses with the destination
address first. The use and ordering of these two bytes is determined by
the Ethernet definition. The controller hardware expects to find the
destination address in the first byte. The third byte contains a number -
that identifies the packet type, described below. The fourth byte is a

sequence number that identifies each packet to prevent the receiver from




Ml s 1 42 L gL L e e

g e

j
\
»

BYTE # 0 1.2 3 4 5 6

BITS 118|818

8

16

SYNC BIT

PACKET TYPE

Figure 2.

21
N N+1 N+2
16
T CHECKSUM
DATA

LENGTH OF DATA (HIGH:LOW)

SEQUENCE NUMBER

SOURCE ADDRESS

DESTINATION ADDRESS

Packet format




LA

R A . A I e
o T T T T T T T T PR I B A i) T P O . - . N el T

22

accepting duplicates in the event that a packet is retransmitted. The
remaining two bytes in the header contain the number of actual data
bytes in the data porticn of the packet, with the high order byte first.
From zero to 1018 actual data bytes can be inserted in the packet making
a maximum packet length of 1024 bytes (six header bytes plus 1018 data
bytes). 1In addition, the controller hardware appends two bytes to the
end of every packet. These two bytes provide an error-detecting check-
sum, but they are completely unavailable to the host computer's
software. The "sync™ bit is used by the hardware to synchronize the
receiver at the start of the packet transmission and is also unavailable

to the host.

There are seven different types of packets that are used in this
system, four of which are used in this file transfer protocol and three
that are concerned with the communication initiation protocol. These
seven packet types were defined specifically for this network implemen-

tation and their meanings are summarized in Table 3. The ACKFILE type

Table 3. Packet Types

Type Code Description
ACKFILE 1 Packet received correctly
NAKFILE 2 Requested file on HP 3000 does not exist
DATAFILE 3 Packet contains file data
ENDFILE 5 Indicates end of file
ENDREPLY 6 Acknowledges the ACKFILE of the ENDFILE
SENDFILE T Prepares receiver to send a file
RECFILE 8 Prepares receiver to read a file

23

':.}1.1

kevis o




.a

23

is an acknowledgement packet used by the receiver to acknowledge the
correct reception of a packet. DATAFILE is used by the transmitter to
identify packets that contain the actual file data. The ENDFILE and
ENDREPLY packet types are used in the end sequence described below. The
SENDFILE, RECFILE, and NAKFILE packet types are used to initiate commun-
ication between the two hosts and their use is described in the next

chapter.

3.2. FEile Iransfers

As mentioned above, files are transferred from the sender to the
receiver as a series of consecutively numbered packets. This protocol
is based on the "Ethernet File Transfer Protocol" described in [3] with
some modifications as suggested in [10]. This system only allows one
file at a time to be transferred between the two hosts. Packets
transmitted between other stations can be multiplexed on the ether since
each station controller ignores packets intended for other destinations.
That is, there can be no multiplexing of file transfers to the same des~
tination (but the ether can be multiplexed for transfers between dif=-
ferent destinations) and there can be no multiplexing of file transfers
if two or more of these transfers involve the VAX or the HP 3000 in any

way.

After the initial communication is established between the two com-
puters, this file transfer system is invoked to perform the actual
transfer. An example of this protocol is shown in Figure 3. The sender
sends DATAFILE packets consecutively numbered from one (modulo 256,

since the sequence number field in the header is eight bits wide).

RPNV SR T Sl O A T S L P PP DU TN UL P AP - I S R N




--------------------

24

SENDER RECEIVER
DATAFILE 1 >
¢ ACKFILE 1

DATAFILE 2 —X

- v.:-“‘{ I-v. i SCRNONCS
B ' PR A R
A T T e

—TIME OUT-
DATAFILE 2 b
4 ACKFILE 2
DATAFILE 3 b
S X— ACKFILE 3
DATAFILE 3 >
3 — ACKFILE 3
o DATAFILE N -
5 : ACKFILE N

ENDFILE  N+1 —
¢—— ACKFILE N+1
ENDREPLY N+2 —

DONE DONE

% I A VAN LT
AR RIRINTAANRIES Y VLA PR

Figure 3. An example of the file transfer protocol

..............




,_

vTrT
e

VLS
et

A8

25

These DATAFILE packets have the format previously described with the
*data® portion ocontaining the actual file data. After each packet is
transmitted, the sender waits for an ACKFILE packet from the receiver
with a matching sequence number, thereby acknowledging the correct
reception of the packet. These ACKFILE packets have an eampty "data"
portion and consist only of the header >3tes and the controller-
generated checksum. If an acknowledgement is not received within a set
period of time (five seconds), the sender retransmits the same packet
and again waits for the corresponding acknowledgement. The sending pro-
gram will retransmit the same packet up to MAXCOUNT times, where MAX-
COUNT is a parameter in the program that can be changed by recompiling
the program. If there is no acknowledgement after MAXCQUNT transmission
attempts, the sender simply assumes that the remote receiver is dead and

aborts any further transmissions to that destination.

The receiver, meanwhile, waits for some packet to arrive on the
net. Each packet is examined to make sure that it is undamaged and has
the proper sequence number, that is, that the packet sequence number
matches the expected sequence number. This expected number is simply
- one more than the sequence ﬁumber of the last correctly received packet.

If this is the case, the receiver accepts the packet, stores it in the

il file, acknowledges the packet, and increments the expected sequence
E?é number. I1f the packet is undamaged, but the sequence number is one less
b
;i; than the expected, then the packet is acknowledged and discarded. The
EE [ assumption ia that the previous acknowledgement for that packet was lost
iﬁﬁ o or damaged in transmission and needs to be retransmitted. All other
& |
ik

Lo el e alta el e o me LA P o % o e B e e e e T . . PRS- S R




77 Yl

——— - T W W T T T T T e R R W W T Y T - W . - -
PRl ol gl s bl e Shii Sl A et S Tl B E S DY P B P . N LELW LR R

26

packets (those that are damaged or have an improper sequence number) are
simply ignored, the receiver knowing that the sender will shortly

retransmit any packets that have not been acknowledged.

After all of the data has been transmitted, the sender sends an
ENDFILE packet with the next consecutive sequence number to indicate to
the receiver that the file transfer has been completed. This ENDFILE
packet consists only of header bytes and the controller-generated check-
sum and has an empty "data"™ portion. The sender then waits for the
receiver to acknowledge this ENDFILE with the standard ACKFILE packet.
Upon receiving the ENDFILE, the receiver acknowledges it and then waits
for a period of time. After receiving this acknowledgement, the sender
transmits an ENDREPLY packet, which also has an empty "data" portion,
and 1is now done with the entire file transfer. The waiting receiver

receives this ENDREPLY and then it is also done with the file transfer.

This relatively complex end sequence makes it practically certain
that both the sender and the receiver agree on whether the file has been
transmitted correctly. If the ENDFILE packet is lost in transmission,
the sender will simply time out and retransmit it as it would any other
packet that has not been acknowledged. If the aeknoﬁledgement of this
ENDFILE packet 1is 1lost, the sender will again simply time out and
retransmit the ENDFILE. The packet will eventually be acknowledged by
the waiting receiver. If the ENDREPLY packet from the sender is lost,
the receiver will time out (five seconds). After it times out, it can

quit and assume that the transfer was completed successfully since it

previously received the ENDFILE packet.

L.,




27

4. COMMUNICATION INITIATION AND THE USER INTERFACE

The level of protocol described in this chapter is the highest
level used in this local network system. This level does all of the
communication with the user of the system and is concerned with opening
and creating the required files by using the file handling procedures
available within the UNIX operating system on the VAX and the MPE
operating system on the HP 3000. It is also concerned with detecting
and reporting to the user any errors that may occur due to problems in
opening files, system crashes, improper usage of the file transfer com-
mands, and other such problems. Within this protocol is a subprotocol
that is concerned with initiating communication between the two comput-
ers to allow the transfer of files using the previously described file

transfer protocol.

4.1. System Organization

The system organization requires the user to log in on the VAX to
initiate file transfers both to and from the HP 3000. On the VAX, the
user executes a command that runs a program to communicate with a simi-
lar program that is running continuously on the HP 3000. This program
on the HP 3000 is called a network daemon and only responds to commands
sent to it over the net. The term "daemon"™ is used by the developers of
the UNIX operating system to refer to a program that is continuously
waiting for the conditions to occur that cause it to go into action.
This daemon runs in a special account called ETHERNET.SYS and uses the
system's file handling procedures to store and retrieve files from any

user's directory that has read, write, and save privileges specified as

— —— — -k B di VS
—— L e L T e . Cafirte e Auril - A .

TR LT, : ’ - . - . . NP Lo o A dbanlnster - CUME W G SIS BT WU S e S

ISTEITR L“.L;Q(

N BRI

PO 1Y




- — - - ———T—— e
TR v LAYt A e i s M T . b Fldat*sie) - v T T —— o -

g =1

T T v
. e

2 28

ANY[11]. When the terminal port connected to the controller on the VAX
is opened by running the file transfer command, it is allocated by UNIX
exclusively to that user. This exclusivity allows only one VAX user at

a time to transfer files.

INMPOE S
N
)

Shown in Figure 4§ is a schematic representation of this systenm B

organization. As this figure suggests, files are transferred between

A~ - MR

the user's directory on the VAX and the file system on the HP 3000.

This file convention allows the user to specify the full path name on

> qman

both computers and thereby place the file in any directory to which the

v
LY

A

user has access, For example, on the HP 3000 a fully specified name is
3 of the form “FILENAME.GROUP.ACCOUNT." If the name is not fully speci-
q. fied, it will default to the ETHERNET.SYS account on th; HP 3000 and can
be transferred to the user's directory using the FCOPY command[11]. If
3 the path name is not fully specified on the VAX, it defaults to the

user's current working directory.

The file program on the VAX (see Appendix 3) must be linked to two

command names after it is compiled using the "1n" command{7]. The two
names to be linked to this program are "sendhp" (meaning send a file to 31

HP 3000) and "gethp" (meaning get a file from the HP 3000). This naming

E— S

is necessary because this single program uses the name with which it 1is

P

called (sendhp or gethp) to determine the direction in which the files

MSEIAAAY {

will be transferred.




i

s

USER

VAX

<37

NET PROGRAM K

29

5

<

USER'S
DIRECTORY

HP 3000

FILE SYSTEM

NETWORK
DAEMON

4[ CONTROLLER ]@——B

ETHER —Z

:

%{ CONTROLLER g—H|

Figure 4, System organization for file transfers

LIPSO UV o T

PR Sy L - s St o i




.
Tj -~
b .

30
{ ]

4.2. File Transfers From the YAX to the HP 3000

Using the command "sendhp srcfile [destfile]™ to call the VAX file

program (see Appendix 3) will cause the file named in "srcfile" to be -~
transferred to the HP 3000 over the network. The "destfile™ is the name

that the user wants the file to be called at the remote computer. The

brackets indicate that "destfile™ is an optional parameter. If it is

= omitted, the file name at the destination defaults to be the same as the

= source file name. If this command executes properly, the program simply

f! ends and returns the system prompt. If it is unsuccessful in transfer-
o

:3 ring the file after all attempts at retransmission, it will print an
5; error message to the terminal indicating the nature of the problem.

F. The program executes the following sequence of events to process

the "sendhp™ command. It first checks the number of arguments to make

= sure all of the required arguments are present and to make sure that
E! there are no additional arguments. The arguments for "sendhp™ are
i; sendhp itself and the words typed after the command on the same 1line,
é; namely the source file name (srcfile) and, optionally, the destination
¥ file name (destfile). If the number of arguments is wrong, it prints an

error message indicating the proper usage and terminates execution. If

'i the number of arguments is correct, it checks the name with which it was

invoked to determine the direction of the file transfer. Since in this
i? case it was invoked with the name "sendhp," the direction of transfer is
from the VAX to the HP 3000. Once the direction is known, the progranm
assigns as thé destination file name the third argument of the command,

or it defaults to be the same as the source file name if no third argu-




T

Y= Y T T TV Y, A

-1

T

L AN Aaml 2t g

31

ment is given. Next, the terminal port connected to the controller is
opened and allocated to this user and the network station address of the
controller is determined using the enquire (ENQ) command previously
described. If the controller is presently allocated to another user,
the program will terminate with a message indicating that the controller
is busy. Otherwise, the program next attempts to open the source file.

If it does not exist, the program terminates with an error message.

After this initialization, the program attempts to initiate commun-
ication with the network daemon running the HP 3000. This is done by
sending a RECFILE packet which tells the network daemon to prepare to
receive a file from the VAX. This packet has the same format as previ-
ously described with the data portion containing the destination file
name, which is the name that the network daemon will use to save the
file in the HP 3000 file system. Upon receiving the RECFILE packet, the
network daemon opens a new file with the pi1 oper name and then sends an
acknowledgement (ACKFILE) packet back to the VAX to indicate that it is
ready to begin receiving the file. If for any reason the VAX does not
receive the acknowledgement packet before timing out, it Simply

retransmits the RECFILE packet.

At this point, communication has been established between the two
computers and they are ready to begin the actual file transfer. The
file transfer protocol described in the previous chapter is then used to
effect the transfer with the VAX as the sender and the HP 3000 as the

receiver. After the end sequence is completed, the daemon on the HP

. 3000 attempts to close the just received file as a new permanent file

I




— T - T
~ T AR T PN R P Lav SN

32

and save it in the disc file system. If a file already exists in the

directory with the same name, it will be unable to successfully close jj

the file and will rename the new file so that it can be properly saved. ‘
This renaming is done automatically and the user is not notified of the

change. It is done simply as a convenience so that the file will not

have to be transferred again, but also will not overwrite a previously -

o

existing file. The renaming consists of simply appending a one digit

number to the end of the file name to give a unique name to this new

file. To get the correct (renamed) file, the user lists the contents of

T

his directory (after logging on to the HP 3000) and looks for a file
having the expected name plus the added single digit. The file with the
& largest added digit is the most recent version received over the net.
4.3. File Iransfers From the HP 3000 to the VAX

To send files from the HP 3000 to the VAX the command "gethp -

"spefile™ and "destfile" have meanings as in the "sendhp" command. As

previously mentioned, both of thuse commands must be linked to the same

b

3

E- srcfile [destfile]”™ is wused to call the VAX file program, where
L -

9

4

program. As when the program is called with "sendhp," "gethp" causes it

to go through the same initialization sequence, first checking for the

proper number of arguments, then determining the transfer direction and j
Ff the destination file name, and finally opening the controller's port and X

B
determining the network station address of the controller. After this

initialization, the program is ready to initiate communication with the 1

network daemon on the HP 3000.

i




s Y YV Y WTWYT T, e F

PR ————

P — L

33

The first step in setting up communication with the network daemon
is for the VAX to send a SENDFILE packet. This packet is formatted as
previously described with the source file name in the "data®™ portion of
the packet. After receiving this packet, the network daemon attempts to
open the named file. If it cannot open the file, probably because it
does not exist (perhaps the user spelled the name wrong), then it sends
a NAKFILE packet back to the VAX. This NAKFILE is in the standard for-
mat with nothing in the "data" portion of the packet and consists only
of header bytes and the controller-generated checksum. Upon receiving
this negative acknowledgement, the VAX prints an error message to the
user indicating that the file does not exist and terminates execution.
If, however, the file exists and is opened successfully, the network
daemon returns an ACKFILE packet to the VAX indicating that it is ready
to transmit the file. Upon receiving this acknowledgement, the VAX
creates a new file with the name in "destfile" (or T"srcfile"™ 4if no
"destfile®™ is specified) in which to store the incoming file from the
network daemon. If a file already exists on the VAX with the same name
as in T"destfile,"™ the program will append the suffix ".new" so as to
avoid overwriting the old file. Once this communication is established
and all of the appropriate files are opened and created, the file
transfer protocol described in the previous chapter is used to transfer
the files with the network daemon as the sender and the VAX as the
receiver. After the file has been transferred, the program terminates
and returns the system prompt to the user. Other error messages are

similar to those for "sendhp."

PO




34

4.3. The Network Daemon

The network daemon is the program that runs continuously on the HP
3000 1listening for file transfer commands from the VAX sent over the

net. The logic of this program closely follows the logic used in the

program described above and a listing for the entire network daemon is

included in Appendix 4. The main difference between this program and

U A 4
MO 7~ - VAR

- the "sendhp/gethp" program above is that this network daemon only needs

to be started once when the HP 3000 is initially turned on or a cold

start is executed. To start this program, the system operator needs to
execute the command "STREAM STARTNET.LILJA.SYS" which will load in the
network daemon and start it running in the account ETHERNET.SYS. Before
this commandiis executed, the operator should manually reset the network
controller. A listing of the file STARTNET.LILJA.SYS is shown in Appen-

dix 5.

4.5. System Error Codes

———
[ I A

vy
f

ot

There are several errors that can occur when using the "sendhp"™ and

"gethp"™ commands that will cause the program to terminate. Besides

A A LS

printing a message on the user's terminal, the program also returns an

error number using the Mexit" system call. These error codes are sum-

A A3 Adadi it it

marized in Table 4. If the file was transferred successfully, the pro-
{ gram will return 0 to indicate that no error occurred. Error code 1
g means that the program was called with the incorrect number of argu-
5 ments, either no source file name was given or too many file names were
L

given. Codes 2 and 8 mean that the source file does not exist on the

VAX or the HP 3000, respectively. This is usually due to the file name

-




O ind 2504

Py A 3 Caatt

L B L ke s amh g NN 3 i SOk At e

Lo e ae oo

35

Table 4. System Error Codes

Name Code Error Message
NOERROR 0 (No message is displayed.)
BADARGS 1 Usage is: sendhp srcfile [destfile] or

Usage is: gethp srcfile [destfile].

BADOPENVAX 2 Error - can't open (filename) on VAX.
BADREMOTE 3 Remote machine does not respond.
CONTDOWN y Controller on VAX is dead. Try resetting it.
NOCONTOPEN 5 Couldn't open controller's port.

It must be busy (or dead). Try again later.
NOCONFIG 6 Couldn't counfigure the controller's port.
XMITERROR 7 Some sent packets were not acknowledged.

Try again.
BADOPENHP 8 Error - can't open (filename) on remote machine.

being spelled incorrectly. If the network daemon on the HP 3000 does
not repond to a request from the VAX after the request has been
transmitted a fixed number of times, the program will assume that the
remote machine is dead and will return error code 3. If the network
daemon acknowledges some, but not all of the transmitted packets, the
program assumes that the daemon program must have crashed in the middle
of the transfer and error code 7 is returned. In this case no (partial)
file is stored in the receiver's file system if the HP 3000 is the
receiver. However, a partial file could be stored in the VAX file sys-
tem if the VAX is the receiver. The user may wish to try to transfer
the file again., If a peculiar system state was left at the end of the

first transfer, a new error message will indicate the problem.

Error codes 4 through 6 are concerned with the status of the net-
work controller connected to the VAX., When the controller does not

respond to the enquire command (ENQ), it must be dead and needs to be




o

36

-
5 manually reset, This problem returns error code 4. Codes 5 and 6 are %
E; returned if the program is unable to open or configure the terminal port g
ii connected to the controller. The program will be unable to open the B
[ port (code 5) if someone else is already using the network, but the pro- r?
gram should be able to open the port successfully after the other user - 4
is finished. If the program was able to open the port, the UNIX ‘"stty" E
routine should also be able to configure the port. Error code 6 is g
returned if it cannot. These error codes are only intended to point the ]
user in the proper direction and should not be taken as the last word in éﬂ
diagnosing the error. #

4.6. Packet Size for File Transfers

The size of the packets have a significant effect on the efficiency
of the file transfers. Larger packets are generally desired for faster

transfers[12]. Due to a limited amount of buffer memory, the controller

;f restricts the maximum packet size to 102U4 bytes. When file transfers ?‘

are attempted using this maximum size, it has been found that the file

e
Py

system on the HP 3000 is too slow to keep up with the packet traffic. h
3 That is, when transferring a file from the VAX to the HP 3000, the HP 3
E;: 3000 takes too long to store and acknowledge the packets, thereby caus- |
?‘ ing the VAX to time out and retransmit many packets. The result is a .i
Ei degradation of the overall system performance.
E~ Another more severe limitation is that the VAX will only buffer a
%i maximum of 256 bytes from the controller terminal port on input. This J

limitation only becomes apparent when the VAX is heavily loaded. When

it is lightly loaded, the terminal driver appears to have enough time to

B .'-'AVX LS4 e
.




37

read all of the characters being sent by the controller, but characters
that overflow the buffer under heavy VAX loading are simply thrown away.
When these characters are discarded, the file <transfer program waits
indefinitely for the discarded characters to be transferred by the con-
troller. The only way to recover from this problem is to restart the

program and manually reset the controller.

The result of these limitations is that for all file transfers a
packet size of no more than 256 bytes should be used. This maximum size
provides for reasonably efficient transfers and still assures proper

buffering and timing on both of the host computers.

A A A At . A




- Aty i

B - . AR AR

AN IR S
o N RS

LA
'

.
.

oA e
e’ Wt
Gt AT

oy
AR D A

ey

-
.

o
4
.

(' |' -‘ Ay

f

SR 1

NS
o h L e
‘.-".. O el

\

o SRS T Y seteaee
Y P L
Ot AR O S

v vy Y

Ty
P 4 A
PR e Ty e
RPN Pt e e
’

.

38

3. CONCLUSION

We have described the implementation of a local computer network to
allow the transfer of files from one host computer to another. The
transfer is accomplished by logging in on the VAX computer and executing
one of two simple commands to transfer a file to or from the HP 3000
computer. The four distinct levels of protocol used in this implementa-
tion were d§scribed. The lowest level protocol, the Ethernet protocol,
controls the actual transmission of packets over the ether and is imple-
mented in a previously built microprocessor based controller. This
level of protocol delivers packets to their destinations with a high
probability of success, but any error control must be done at a higher

level.

The remaining three levels of protocol represent the main work of
this thesis and are implemented entirely in software on the host comput-
ers. The host to controller communication protocol, which allows the
host computer to control the slave Ethernet controller, was the most
difficult to implement due to its dependency on the unique characteris-

tics of the terminal drivers of the two hosts.

The next level of protocol is the file transfer protocol which
implements the transfer of files as a series of sequentially numbered
packets. This protocol is also tolerant of transmission errors that
destroy individual packets by providing for the retransmission of pack-

ets that have not been acknowledged after a fixed interval of time,

The highest level of protocol in this local network communicates

with the user and injitiates the communication between the network




39

program running on the VAX and the network daemon that runs continuously

on the HP 3000.

5.1. Suggestions for Improvement

While the system works as it was intended and provides a simple
mechanism to transfer files between the two computers, there are some
things that could be done to improve its overall performance and useful-
ness. One main disadvantage of the current implementation is the rela-
tively slow speed of large file transfers. The main bottleneck is the
9600 baud serial communication line connecting the controllers to their
host computers through terminal ports. A much better strategy would
employ a direct memory access (DMA) connection between each controller
and its host computer. Even a byte parallel connection between the con-
troller and the host would be preferable to the serial connection now
used. One problem with a DMA or a parallel connection scheme is that it
would be unique to each type of host and the controller would lose some

of its portability.

Another improvement to the controller would be to simplify the host
to controller communication protocol. As it is now, this protocol is
complex and difficult to use. It would be pice if the controller would
listen to the ether continuously and be able to notify the host whenever
a packet arrived. This would eliminate the need for the daemon on the

host and would make the host's network software much simpler.

There are some other improvements to the system that could be

implemented totally in software on the host computer. One of these is

s N S e e sl P AP R DO s RS DL S P PN -1 -~

e T

.




A Sl

40

to allow the multiplexing of several different simultaneous file
transfers from several users. This multiplexing, however, would cause o
ambiguity in packet sequence numbers since these numbers are sequential ‘
only within a single file transfer. To resolve this ambiguity, an extra

field would have to be added to the header portion of each packet for a

"file number." This file number, together with the packet sequence

number, would uniquely identify each packet of each file transfer in

process.

Another improvement is to allow a use to log in on either host
computer and transfer files either to or from the remote host. This
would require a network daemon on both hosts to listen for commands on
the net and some mechanism to allow a user logged in on the host to pass
a command to the local daemon. The implementation of this mechanism
does not appear to be straightforward and would probably be a nontrivial

task.

One other useful improvement is to allow a user to log in on the

remote machine through the network. For example, a user could log in on

the VAX using a modem through a dial-up line and then use the network to E

[ORY

log 1in on the HP 3000 as a normal user. This would require an intelli-

| SR

) gent process to be runping on the remote host to simulate a terminal or
8 ‘ Woe on
N it would require a substantial modification to the software in the Eth- ]
f§ ernet controller. Any modifications to the controller would probably .
-
5% make it no longer portable, which may be undesirable. =
3

1

Anyone attempting to modify this system should look carefully at

o

the program listings in the Appendices. Many of these routines, such as

AP U U PRSI AP PR WU . o WO 1 PO U G S AL G - W AP G L. Y




41

the routines to send and receive individual packets, could probably be

used unchanged in any future enhancements. In any case, they should
provide a guide for implementing many of the fine details such as the
complex host to controller communication protocol. While this system is

complete as it is, it is hoped that it will provide a starting point for

a larger local network.

. p—

PR W WU S W U P VO S L T L GG N VN — . b W AP RS N U SUE JP S



Appendix 1

The PACKET program for the VAX

42

el




(2 ar2 h 2an ad ang

o o

43

/% program to send and receive packets over the Ethernet #/

/% include required libraries &/

#include <stdio.h> /®* standard i/o library %/
#include <sgtty.h> /% library for tty set-ups W%/

/% define constants #*/

#define TTY ™/dev/tty07" /% port to connect controller to #/

#define MAXLINE 510 /% maximum length of input line #/

#define PACKETSIZE 512 /% maximum size of packets #/

#define MAXCOUNT 16 /®* maximum number of tries before aborting
transmission attempts &/

#define OK 1 /% flag indicates transmission was Ok &/

#define NOTOK O /% flag indicates transmission was not OK ¥/

/% define command bytes L7

#define ACK 0x06 /% acknowldgement - all ok %/

#define NAK 0x15 /% negative acknowledge - error has occured %/

#define ENQ 0x05 /% enquiry command #/

#define SEND 0x11 /% send the following packet %/

#define SOH 0x01 /% start of header - device sending SOH is
requesting the packet length L7

#define REC 0x12 /% receive packet from Ethernet #*/

#define CAN 0x18 /% cancel last receive request #/

/% define golbal variables #/

char destaddress; /% address of destination controller ¥/
char srcaddress; /% address of source (this) controller ¥
int controller; /% file descriptor of controller port #/

/* main program to get and process commands W%/




'1" L

et 2 AP EADARASIE B0) SLTLEMASEM IS B § Sinart

i B9 < 2

L anteh 48 raviin 4 T YT e Towm T e s o o m e

4y
main ()
{
int command; /% command to be executed ¥/
printbanner(); /% print banner, version number %/
initialize(); /% init station addresses #/
help(); /% print list of commands %/

/% execute commands until quit %/

while (((command = getcommand()) != 'q') && (command != 'Q'))
¢
switch (command)
{ case 's': /% send a packet ¥/

case 'S':
send();
break;

case 'r': /® receive a packet ¥/

case 'R':
receive();
break;

case 'e':

case 'E': /% enquire - print address %/
enquire();
break;

case 'e': /% cancel last receive #/

case 'C': /% ~ command 74
cancel(); '
break; -

case 'h': /% help - print list of ¥/

case 'H': /% these commands &/
help( ) H \
break; \\\

default: /% invalid command>%/
printf(®\ninvalid command\n");
break;

} AN

/% print quitting and end %/ AN

printf("\nquitting...\n"); AN

/® send command read a packet from the terminal and send it
over the ethernet. assumes addresses are initialized in
srcaddress and destaddress 8/

b




—— L e e Jbeilh it il nebil il Aa M- AL Jetul el At M e PO Lt R L v . W e TR T, e

}
!
?
E 45
i !! send() -
. { ,
i tint length; /% length of data input from terminal ¥/
L - char packet[ PACKETSIZE]; /% completed packet to send.
b dest : src : data ®/
- char data[MAXLINE]; /* data read from terminal #/
S int 4,J3; /% indices in loop ¥/
) int count = 1; /® number of attempts to xmit so far %/

/% read the packet from the terminal ¥/

printf("Enter the packet terminated by <ret>:\n\n");
length = getline(data, MAXLINE);

;," /% create the packet, ie. add addresses to start #/

packet[0] = destaddress;
packet[1] = srcaddress;

. for (i=2, j=0; Jj < length ; <++i, ++j)
E e packet[i] = datal j];

/% try to send packet until OK or too many tries ¥/

‘! while ( (sendpacket(packet,length+2) !z OK)
&& (count < MAXCOUNT) )
++count;

/% print message about transmission %/
n | 1f (count >= MAXCOUNT)

printf("\npacket not transmitted after %2d tries\n",count);
else printf("\npacket transmitted OK after %$2d tries\n",count);

. /% sendpacket - send a single packet. addresses are embedded within
e the packet. returns OK if good transmission, NOTOK otherwise L7

sendpacket(packet,length)

char packet[]; /% packet to be sent %/
B int length; /% length of packet #/
u {
( char reply; /% controller's replies to host %/
- char status; /® status byte from controller %/
a int xmitflag = NOTOK; /% hold OK or NOTOK #/
char len_low; /% low-order byte of length %/

il.l‘l'illl"""“.'. LI A PSPPI W U VR D WA T DRI U L S L U SR Uy PN IS WO SRR SO W S N S Y




AN RS et ol 40am o P SakS] e aa
EOALIAAMEL 5 SRR

R

s A .
oA vt

N > < MO P <D

Rt bl ekt i Saan_ St AR IR

char len_high; /% high-order byte of length ¥/
int 1i; /® index in loop %/

/% split length into high- and low-order parts %/

len_high = length / 256; /% truncates fraction #/
len_low = length - (len_high * 256);

/* ready controller to xmit */

sendcontroller(SEND);
reply = readcontroller();
status = readcontroller();

if (reply == SOH) /% controller ready %/
{
sendcontroller(len_low);
sendcontroller(len_high);
reply = readcontroller();
status = readcontroller();

if (reply == ACK) /% controller ready %/
{

for (1=0; i<length; ++i) /% send packet #/
sendcontroller(packet[i]);

reply = readcontroller();

status = readcontroller();

if (reply == ACK) /% it worked #/
xmitflag = OK;
}
}

return(xmitflag);

/* receive command - receive a packet from the ethernet and print it

on the terminal 8/
receive()
int length; /% will contain length of packet recv'd %/
char packet[ PACKETSIZE]; /% recv'd packet #/
int 1; /% index in loop ¥/

46

[P UR PP

“1

ey
Al

ik




u7

/% print message and receive the packet #/
printf("\nWaiting for packet on the ethernet...\n");

if (recvpacket(packet,&legsth) == OK)

{
/® print sddresses, print the packet §/
printf(®packet received OK\n\n");
printf("Destination address: %2x \n",packet[0]);
printf(*Source address: %$2x \n\n",packet[1]);
for (1=2; 1 < length; <++i)

putchar(packet{1]);

printf("\n\n");

}

else printf("\npacket damaged. receive cancelled\n");

/% recvpacket - receives a packet from the ethernet with this
stations's address or the broadcast address.
returns OK if recv'd OK, NOTOK otherwise.
values of packet and length returned via pointers
cancels receive command if not received OK &/

recvpacket(packet,plength)

Ty
B

1 char packet[]; /% contents of packet received #/
y int ¥®plength; /% pointer to length. Returns length of
$ packet to calling routine L7
{ {
i char reply; /* controller's replies to host */
od char status; /® status byte from controller 8/
s char len_low; /% low-order byte of length ®/
char len_high; /® high-order byte of length &/
int 1; /% index in loop ®/
int recvflag = NOTOK; /% holds OK or NOTOK ®/

/% tell controller to receive packet #/

sendcontrol ler(REC);
reply = readcontroller();
status = readcontroller();

ey

/% check if packet recv'd OK %/

if (reply =z= ACK) /% packet OK &/
{




48

/® read length %/ )
sendcontroller(SOH); N

len_low = readcontroller();

len _high = readcontroller();

sendcontroller(ACK);
/® read the packet #/ T
#plength = (256 ® len high) + len_low;
for (i=0; 1 < ¥#plength; ++1i) ;
packet[i] = readcontroller(); ]
sendcontroller(ACK); !
rcvflag = 0K; )
} 1
else cancel(); /% not recv'd OK #/ ]

return(rcvflag);

/% enquire ~ print ethernet station address

also re-initializes srcaddress */
-Ef enquire()
e { t
o /®* get address, print it %/
@ .
" srcaddress = findaddress(); y
) printf("This station address is %2x H\n", srcaddress); ]
s
= } l
6
g i
;!
:4: /% cancel - send cancel command to controller %/
fi cancel()
b {
L
b
r—
L T T T e e et T T T T Ty e e e e




49

char reply; /% controller's reply to CAN #/
char status; /% also sends status byte 8/

/% send CAN, read reply and status %/

sendcontroller(CAN);
reply = readcontroller();
status = readcontroller();
printf("\ncancelled\n");

/% help - print menu of available commands %/

help()
{
printf("\n");
printf(®"s - send a packet\n");
printf("r -~ receive a packet\n");
printf("e - enquire: print this station's ethernet address\n");
printf("c - cancel receive command\n");
printf("h - help: print this menu\n");
printf("q - quit\n\n\n");

/® initializes source and destination addresses.

1%% ) source address is determined by enquiry command.

- destination address is prompted from user. L7
- .

o initialize()

b~ {

F

;_a‘ - /% initialize controller's i/o port %/

S initcontroller();

rgi . /% do ENQ command to init and print this station's address %/
&N

5' r enquire();

/% read dest. address from terminal #/

Lo et . o
AR LA
LTl P
N B P T LA
N R . .
[l
- R
X . ,

PRI . D A S At . AR - LT :
I 1Y, WL D WG YD ST WY = PR Sy 2o s e S PP P P T P i e a o - A2




—y T T T e T e T Py ANt Al st bR ]

-

4 L
T T, Y LA
T .o ‘I P

merer

printf("Enter destination address <00 - FF> ");
scanf("%2x", &destaddress);
printf("Destination address is $2x\n\n",destaddress);

/% find the ethernet station address of the controller #/

/% send ENQ to controller ¥/
sendcontroller(ENQ);
/® read status, read and return address %/

status = readcontroller();
return(readcontroller());

/% print heading and version number %/

printbanner()

vy - .
RIAMARESES I S

. {

- printf("\n\n\n\n");

1 printf("Ethernet packet transceiver test\n");
- , printf(" Version 1.0\n\n\n");
u

2

;.

E.

-

d

¥

/% uses the ENQ command. returns value of address &/
findaddress()
{

char status; /% status byte returned from controller #/

50

o

PITRY

| S

el




MG & oriar e e o

-

51

/% getcommand - read command from terminal
returns single character corresponding to the command #/

getcommand()

{
char inputline[MAXLINE]; /% line read from terminal %/

/% print prompt, read line, return first character %/
printf("command> *); .
getline(inputline,MAXLINE);

printf("\n");
return(inputline[0]);

/% getline - from "c" by Kernighan and Ritchie, p. 26 ¥/

getline(s,lim) /® returns length of line read in ¥
char s[]; /% line that is read in ¥/
int 1im; /% max. size of line to be read %/
{
int c, 1;
for (i=0; i<lim-1 && (c=getchar() ) I= EOF && c != '\n'; ++i)
s{i] = ¢;
if (¢ == '\n')
{ s(i] = c;
++13

}
s(i] = ' *;
return(i);

/% initcontroller - open and init. tty port to talk to controller #/

initcontroller()
{
/% structure to initialize tty port to controller L7

static struct sgttyb ttyb = {




-8

T8 ]

0 P AR

B9600, B9600,
o, O,
RAW | ANYP

/®* open controller's tty port #/

if ( (controller = open(TTY,2)) == -1) /% couldn't open ¥/
printf("Couldn't open controller's port\n");

else /*®* opened OK so configure port for RAW, 9600 baud */

if (stty(controller,&ttyb) != 0) /® couldn't configure %/
printf("Couldn't configure controller's port\n");

/% sendcontroller - send a byte to con;roller 74
sendcontroller(byte)

char byte; /% byte to be sent #/

{ /% send the byte, print error if not sent OK #/

if (write(controller, &byte, 1) 1= 1)
printf("Can't write controller\n");

/% readcontroller - returns byte read from controller #/
readcontroller()
{ char byte; /% byte read in %/

/® read byte, print error if not read OK #/

if (read(controller, &byte, 1) Iz 1)

52

At

| SN




53

printf("Can't read controller\n");
else return(byte);




54

‘ Appendix 2

The PACKET program for the HP 3000

. e 2 - Q)

i o s ¥
e el .
« it .

CARENIDEEY (% < PLNNURFRIMIRS P+« CHCARONCAUNE (04 ADCLASUCLAA AL




..u"'.""..‘

Qe

WY

$CONTROL USLINIT
BEGIN
<< PROGRAM TO SEND AND RECEIVE PACKETS OVER ETHERNET >>

<< GLOBAL VARIABLE DECLARATIONS >>

INTEGER CONTIN; << FILE # OF CONTROLLER INPUT PORT >>
INTEGER CONTOUT; << FILE # OF CONTROLLER OUTPUT PORT >>
BYTE DESTADDRESS; << ADDRESS DESTINATION CONTROLLER >>
BYTE SRCADDRESS; << ADDRESS SOURCE CONTROLLER >>

BYTE ARRAY MSGB(0:80); << I/0 BUFFER FOR TERMINAL >>

LOGICAL ARRAY MSG(*)=MSGB(0);<< PRINT BUFFER -- "WORD"™ EQUATE >>
BYTE COMMAND; << COMMAND TO BE EXECUTED »>>

<< DEFINE COMMAND BYTES TO/FROM CONTROLLER >>

EQUATE ACK = %(16)06, << ACKNOWLEDGEMENT -- ALL OK >>
NAK = %(16)15, << NEGATIVE ACK - ERROR HAS OCCURED >>
ENQ = %(16)05, << ENQUIRE - RETURN STATUS & ADDRESS >>
SND = $(16)11, << SEND THE FOLLOWING PACKET >>
SOH = %(16)01, << START OF HEADER - DEVICE SENDING IS >>

<< REQUESTING THE PACKET LENGTH >
REC = %(16)12, << RECEIVE PACKET FROM ETHERNET >>
CAN = %(16)18; << CANCEL LAST RECEIVE REQUEST >>
<< DEFINE CONSTANTS >>

EQUATE PACKETSIZE = 128, << MAXIMUM SIZE OF PACKETS >>

MAXLINE = 80, << MAXLINE LENGTH OF INPUT LINE >>

MAXCOUNT = 16, << MAXIMUM NUMBER OF TRIES BEFORE >>
<< ABORTING TRANSMISSION ATTEMPT >>

0K = 1, << FLAG FOR "OK™ >>

NOTOK = 0; << FLAG FOR "NOTOK" >>

<< INTRINSIC DECLARATIONS >>

INTRINSIC READ,PRINT,BINARY,FREAD,FWRITE,FOPEN,FSETMODE,
FCONTROL, IOWAIT,GETPRIVMODE, GETUSERMODE, ASCII;

<<..l..... PROCEDURE DECLARATIONS ...‘l..'...l))

...........




56 )

<< PRINTBANNER - PRINT HEADING AND VERSION NUMBER >>

PROCEDURE PRINTBANNER;
BEGIN .
PRINT(MSG,0,%204); << FOUR BLANK LINES >>
MOVE MSGB := "ETHERNET PACKET TRANSCEIVER TEST";
PRINT(MSG,-32,%40);
MOVE MSGB := "  VERSION 1.0"; j
PRINT(MSG,~15,%40) ; 4
PRINT(MSG,0,%203); << THREE BLANK LINES >>
END; << PRINTBANNER >> ]

<< RWCNTLR - READ/WRITE FROM CONTROLLER >>

T 'il

COMMENT: BECAUSE OF THE LACK OF BUFFERING ON INPUT PORTS,
MUST FIRST SET-UP READ, THEN WRITE, THEN FINISH
READ. THAT IS, CONTROLLER RESPONDS TOO QUICKLY
FOR HP TO CATCH IN NORMAL I/O ;

A “I

PROCEDURE RWCNTLR(INBUFFB, INLEN,OUTBUFFB,OUTLEN) ; 5

LOGICAL ARRAY INBUFF(#)=INBUFFB(0); << EQUATE TO ELIMINATE >>

VALUE OUTLEN, << PASS THESE TWO BY VALUE >>

INLEN;
BYTE ARRAY INBUFFB; << INPUT BUFFER TO CONTROLLER >> ’
3 << RETURNS WITH DATA READ FROM CONTROLLER >>
- INTEGER INLEN; << NUMBER OF BYTES TO READ FROM CONT >> 3
- BYTE ARRAY OUTBUFFB; << OUTPUT BUFFER TO CONTROLLER >> ’
& << ENTER WITH DATA TO SEND TO CONT >>
& INTEGER OUTLEN; << NUMBER OF BYTES TO SEND TO CONT >> ]
[‘ .
- BEGIN
L

S <ottt ]
)

LOGICAL ARRAY QUTBUFF(#)=OUTBUFFB(0); << WARNING MESGS >>
< INTEGER DUMMY; << HOLDS RETURNED VALUE FROM IOWAIT, FREAD >> _
- -]
L << SET-UP READ, NO WAIT FOR FINISH >> ;
(: - DUMMY := FREAD(CONTIN, INBUFF,-INLEN);
7] << WRITE BUFFER TO CONTROLLER >> 4

FWRITE(CONTOUT, OUTBUFF,~OUTLEN,%$320);

[P Y

<< FINISH READ, RETURN BUFFER AND LENGTH >>
DUMMY := IOWAIT(CONTIN,INBUFF);

vy
OO

\'1'11 Ayl

AR . .

Soteme
A

v
!

4’_‘ il

Ao B p ki b WAL UL P Ly L Wl W) e PR G WA R R PP L WOV (P A S W GRS Rt . - ot . . e e -.._‘..A..‘,,.,..»J




- .

57

END; << RWCNTLR >>

<< FIND ETHERNET STATION ADDRESS OF THE CONTROLLER USING ENQ >>
<< COMMAND. RETURNS ADDRESS IN 'ADDRESS' PARAMETER. >

PROCEDURE FINDADDRESS(ADDRESS) ;
BYTE ADDRESS; << RETURNS ETHERNET STATION ADDRESS >»>

BEGIN
BYTE ARRAY BUFF(0:1); << I/0 BUFFER FOR CONTROLLER >>

<< LOAD 'ENQ' INTO BUFFER >>
BUFF(0) := ENQ;

<< SEND TO CONTROLLER, READ STATUS AND ADDRESS >>
RWCNTLR( BUFF,2,BUFF,1);

<< RETURN ADDRESS >>
ADDRESS := BUFF(1);

END; << FINDADDRESS >>

<< ENQUIRE - GET ADDRESS, PRINT IT ON TERMINAL >>

PROCEDURE ENQUIRE;

BEGIN
INTEGER LENGTH; << NUMBER OF CHARS RETURNED BY ASCII >>

- << GET ADDRESS >>
FINDADDRESS(SRCADDRESS); << LEAVES VALUE IN SRCADDRESS >>

<< PRINT ADDRESS >>

MOVE MSGB- := "THIS STATION ADDRESS IS ";
PRINT(MSG,-24,%320) ;

LENGTH := ASCII(LOGICAL(SRCADDRESS),10,MSGB); << CONVERT >>
PRINT(MSG,~LENGTH,$40);

Lo g a4 e e e 02 a0l s g

Lane SN

END; << ENQUIRE >>

| P ] : - -, - : : i P . Senintims NI |
0 . Sedeadascnsiestancstsmntaatentanienstesntumbhauimuianadensithagndutning




LAS ol a8 S
Pl

AN 10 < MASLALSUNAMES 0 JOIRAEMIIRR A 1 vt

r

,,,,,,,,,

58

<< INITIALIZE CONTROLLER'S PORTS, INIT STATION ADDRESSES >>
PROCEDURE INITIALIZE;

BEGIN

INTEGER LENGTH; << TEMP STORAGE OF RETURNED VALUE FROM READ >>
INTEGER CNTLCODE; << CONTROL CODE FOR FCONTROL >>

BYTE ARRAY TTYIN(O0:8); << INPUT PORT >>

BYTE ARRAY TTYOUT(0:8); << OUTPUT PORT >>

<< INIT TTYIN AND TTYOUT >>

MOVE TTYIN := "ENETIN;";
MOVE TTYOUT := "ENETOUT;";

<< OPEN AND INIT CONTROLLER'S PORTS >>

GETPRIVMODE; << FOR NO-WAIT 1/0 >>

CONTIN := FOPEN( ,%604,%4324,-36,TTYIN);

IF = THEN BEGIN << PRINT OK >>
MOVE MSGB := "INPUT OPENED OK";
PRINT(MSG,~15,%140);

END;

GETUSERMODE; << NO MORE NEED FOR PRIV MODE >>

CONTOUT := FOPEN( ,%604,%324,-36,TTYOUT);
IF = THEN BEGIN
MOVE MSGB := "OUTPUT OPENED OK";
PRINT(MSG,~16,%40);
END;

CNTLCODE := %0T4022; << SPEED, TERMTYPE >>
FCONTROL(CONTIN,37,CNTLCODE); << ALLOCATE TERMTYPE 18 AT >>
FCONTROL(CONTOUT,37,CNTLCODE) ; << 9600 BAUD >
FSETMODE(CONTIN,%4); << INHIBIT AUTO CR-LF ON INPUT >>

FCONTROL(CONTIN,13,CNTLCODE); << ECHO OFF >>
FCONTROL(CONTOUT, 13,CNTLCODE) ;

FCONTROL(CONTIN,20,CNTLCODE); << DISABLE INPUT TIMER >>

FCONTROL(CONTIN,28,CNTLCODE); << DISABLE BLOCK MODE >>
FCONTROL(CONTOUT,28,CNTLCODE) ;

FCONTROL(CONTIN,27,CNTLCODE); << ENABLE BINARY TRANSFERS >>

e

-—

R

3

—




C e R b o S e M i demiti S SRt Arbatinhas IR RN
T—"‘z - - Pr——— T ——— oy i . R ) . - . RN - . .

59

FCONTROL ( CONTOUT, 27 ,CNTLCODE) ;

CNTLCODE := 0;

FCONTROL(CONTIN,36,CNTLCODE); << NO PARITY, FULL 8 BITS >>
FCONTROL( CONTOUT, 36 ,CNTLCODE) ;

<< DO ENQ COMMAND TO INIT SRCADDRESS AND PRINT IT >>
ENQUIRE;

<< READ DESTINATION ADDRESS FROM TERMINAL >>

MOVE MSGB := "ENTER DESTINATION ADDRESS <0 ~ 255> ";
PRINT(MSG,-36,%320);
LENGTH := READ(MSG,=-3);
DESTADDRESS := BYTE(BINARY(MSGB,LENGTH));
PRINT(MSG,0,%203); << THREE BLANK LINES >>

END; << INITIALIZE >>

<< HELP - PRINT LIST OF COMMANDS >>
PROCEDURE HELP;

BEGIN
PRINT(MSG,0,%201); << BLANK LINE >>
MOVE MSGB := "S ~ SEND A PACKET";
PRINT(MSG,-17,%40);
MOVE MSGB := "R - RECEIVE A PACKET";
PRINT(MSG,-20,%40);
MOVE MSGB := "E -~ ENQUIRE: PRINT THIS STATION'S ADDRESS";
PRINT(MSG,-42,%40);
MOVE MSGB := "C - CANCEL RECEIVE COMMAND";
PRINT(MSG,~26,%40);
MOVE MSGB := "H - HELP: PRINT THIS LIST";
PRINT(MSG,-26,%40) ;
MOVE MSGB := "Q - QUIT";
PRINT(MSG,~8,%40);
PRINT(MSG,0,%201); << BLANK LINE >>
END; << HELP >>

1 .
1
b .
b

™
g

B i‘;:

<< ERROR - MESSAGE FOR INVALID COMMAND >>

I

| ¥ T . R L L . . . . . . . S ) RN - R W “,.,;_..A....i




PROCEDURE ERROR;

BEGIN
MOVE MSGB := W®###ERROR - NO SUCH COMMAND";
PRINT(MSG,~-26,540);

END; << ERROR »>

<< SENDPACKET - SEND A SINGLE PACKET. ADDRESSES ARE EMBEDDED >>
<< WITHIN THE PACKET. RETURNS XMITFLAG = OK IF GOOD >
<< TRANSMISSION, NOTOK OTHERWISE. LEAVES PACKET UNCHANGED. >>

PROCEDURE SENDPACKET(PACKET,LENGTH,XMITFLAG);

VALUE LENGTH; << PASS BY VALUE >>
BYTE ARRAY PACKET; << PACKET TO BE SENT WITH EMBEDDED ADDRESS >>
INTEGER LENGTH; << LENGTH OF PACKET IN BYTES >>
INTEGER XMITFLAG; << RETURNS 'OK' OR 'NQTOK' »>>
BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR SENDING COMMANDS >>
<< TO/FROM CONTROLLER >»

<< INIT XMITFLAG >>
XMITFLAG := NOTOK;

<< READY CONTROLLER TO XMIT BY SENDING °'SND'. >»

<< READ REPLY AND STATUS >>
O BUFF(0) := SND;
™ RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 BYTES >>

IF BUFF(0) = SOH << REPLY IS SOH >>

THEN BEGIN << SEND LENGTH, READ REPLY AND STATUS >>
; BUFF(0) := BYTE(LENGTH.(8:8)); << LOW-ORDER 8 BITS >
é BUFF(1) := BYTE(LENGTH.(0:8)); << HIGH-ORDER 8 BITS >>
ol RWCNTLR(BUFF,2,BUFF,2); << READ/WRITE 2 BYTES >>

AR

IF BUFF(0) = ACK << CONTROLLER READY FOR PACKET >>
o THEN BEGIN << SEND PACKET, READ REPLY, STATUS >>
Lo RWCNTLR(BUFF,2,PACKET,LENGTH) ;

) IF BUFF(0) = ACK << XMIT OK >>
- THEN XMITFLAG := OK;

N END;

o END;

*

8

-~

- - NPT S TUN SR S 2 v S

AN

T

o




1
1

................

v

;’c'
. .

61

;! END; << SENDPACKET >>

§
g
3
Y
;
L?v

<< SEND - READ A PACKET FROM THE TERMINAL AND SEND IT OVER THE >>
<< ETHERNET. WILL TRY TO SEND PACKET A MAXIMUM OF 'MAXCOUNT® >
o << TIMES. ASSUMES ADDRESSES ARE INTITIALIZED IN 'SRCADDRESS' >
- << AND 'DESTADDRESS'., ' >

PROCEDURE SEND;

BEGIN
. BYTE ARRAY PACKET(O0:PACKETSIZE); << COMPLETED PACKET TO SEND >>
ig << WITH DEST:SRC:DATA FORMAT >>
' INTEGER LENGTH; << NUMBER OF BYTES READ FROM TERMINAL >>
INTEGER COUNT; << NUMBER OF ATTEMPTS TO XMIT SO FAR >>
INTEGER XMITFLAG; << INDICATES IF PACKET XMITTED OK OR NOT >>
INTEGER I; << INDEX IN LOOP >>
INTEGER TEMP; << USED IN ASCII CONVERSION FOR PRINTING >>

‘ . << INIT COUNT >>
. COUNT := 0;

e << READ PACKET FROM THE TERMINAL >>

: MOVE MSGB := "ENTER PACKET TERMINATED BY <RET>: ";
n PRINT(MSG,-35,%40) ;

i LENGTH := READ(MSG,-MAXLINE);

s << CREATE PACKET, IE. ADD ADDRESSES TO START »>>

PACKET(0) := DESTADDRESS;

PACKET(1) := SRCADDRESS;

FOR I := O UNTIL LENGTH - 1
DO PACKET(I+2) := MSGB(I);

<< TRY TO SEND PACKET UNTIL OK OR TOO MANY TIMES >>

DO BEGIN
SENDPACKET(PACKET,LENGTH+2,XMITFLAG) ;
COUNT := COUNT + 1;
END
UNTIL XMITFLAG = OK OR  COUNT >= MAXCOUNT;

<< PRINT MESSAGE ABOUT TRANSMISSION >>

IF XMITFLAG = OK
THEN BEGIN

A NI 5 A
. - r—q




-
.

62

MOVE MSGB := "PACKET TRANSMITTED OK AFTER ";
PRINT(MSG,-28,%320);
TEMP := ASCII(COUNT,10,MSGB);
PRINT(MSG,-TEMP,%320) ;
MOVE MSGB := " TRIES";
PRINT(MSG,=~6,%40) ;

END << THEN >»

ELSE BEGIN
MOVE MSGB := "®%8__PACKET NOT TRASMITTED OK";
PRINT(MSG,~27,%40);

END; << ELSE >»>

END; << SEND >>

<< CANCEL -~ SEND CANCEL COMMAND TO CONTROLLER >>
PROCEDURE CANCEL;

BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR COMMANDS TO/FROM CONT >>

<< SEND 'CAN', READ REPLY AND STATUS >>

BUFF(0) := CAN;
RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 »>
MOVE MSGB := "CANCELLED";
PRINT(MSG,-9,%40);
END; << CANCEL >>

pa - |

VI

| SR

PRSI

N ¢ | JN

- -

=

5 .

- by

3 :

.-‘ -l

- .

[ << RECVPACKET - RECEIVES A PACKET FROM THE ETHERNET WITH THIS >> ;j

L << STATION'S ADDRESS OR THE BROADCAST ADDRESS. RETURNS WITH  >>

. << RCVFLAG = OK IF RECEIVED OK, NOTOK OTHERWISE. CANCELS >>

- << RECEIVE COMMAND (WITH 'CAN') IF NOT RECEIVED OK. >> .1

[ ¥

5 PROCEDURE RECVPACKET(PACKET, LENGTH, RCVFLAG) ;

% BYTE ARRAY PACKET; << RETURNS WITH PACKET RECEIVED >> ﬂ

5 INTEGER LENGTH; << RETURNS LENGTH OF RECEIVED PACKET >> -

{ .

e e I L _
e . oo, dasas B, V- ataaiibiateshen




o s i b ARANO A #— SOLSR-L-SRE AL B¢ SO

LA~ DANCERAI A e

tharcarils o e TaerrEainary

vi

INTEGER RCVFLAG; << RETURNS 'OK' OR 'NOTOK' >>

BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR SENDING COMMANDS >>
<< TO/FROM CONTROLLER >

<< INIT. FLAG >>
RCVFLAG := NOTOK;

<< TELL CONTROLLER TO RECEIVE PACKET. WAITS UNTIL PACKET >>
<< IS RECEIVED. >>

BUFF(0) := REC;
RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 BYTES >>

<< CHECK IF PACKET RECEIVED OK >>

IF BUFF(0) = ACK << PACKET OK >>
THEN BEGIN
<< SEND 'SOH', READ LENGTH >>
BUFF(0) := SOH;
RWCNTLR(BUFF,2,BUFF,1); << SEND 1 BYTE, READ 2 BYTES >>
LENGTH := 256 ® BUFF(1) + BUFF(0);

<< SEND 'ACK', READ PACKET >>
BUFF(0) := ACK;
RWCNTLR(PACKET,LENGTH, BUFF,1);
<< SEND CONTROLLER FINAL 'ACK' >>
BUFF(0) := ACK;
RWCNTLR(BUFF,0,BUFF,1); << SEND 1 BYTE, READ NO BYTES >>
<< RETURN FLAG 'OK' >>
RCVFLAG := OK;
END << THEN >
ELSE CANCEL; << NOT RECEIVED OK, SO CANCEL 'REC' >>

END; << RECVPACKET >>

<< RECEIVE - RECEIVE A PACKET ON THE ETHERNET AND PRINT IT ON >»
<< THE TERMINAL >

PROCEDURE RECEIVE;

BEGIN

63

RIPE ISP P §




i 64
w4
BYTE ARRAY PACKET(0:PACKETSIZE); << WILL CONTAIN RECV'D PACKET >> -
INTEGER LENGTH; << LENGTH OF RECEIVED PACKET >> .{
INTFGER RCVFLAG; << INDICATES IF PAKCET RECEIVED OK >> Ci
INTEGER TEMP; << USED IN ASCII CONVERSION FOR PRINTING >> =
<< PRINT MESSAGE AND RECEIVE THE PACKET >> 3

MOVE MSGB := "WAITING FOR PACKET ON THE ETHERNET...";
PRINT(MSG,-37,%40);
RECVPACKET(PACKET, LENGTH, RCVFLAG) ;

IF RCVFLAG = OK ..
THEN BEGIN << PRINT ADDRESSES AND PACKET >> -

MOVE MSGB := "PACKET RECEIVED OK"; &
PRINT(MSG,-18,%202) ;
MOVE MSGB := "DESTINATION ADDRESS: "; =
PRINT(MSG,-21,%320); :
TEMP := ASCII(LOGICAL(PACKET(O)),10,MSGB);
PRINT(MSG,~-TEMP,%40);
MOVE MSGB := "SOURCE ADDRESS: ";
PRINT(MSG,-16,%320);
TEMP := ASCII(LOGICAL(PACKET(1)),10,MSGB);

Yy

PRINT(MSG, -TEMP,$202) ; 3
PRINT(PACKET(2),-(LENGTH - 2),%202); 1
END << THEN >>
ELSE BEGIN ) N
MOVE MSGB := "PACKET DAMAGED. RECEIVE CANCELLED";
PRINT(MSG,-34,%202); :
END; << ELSE > ;§
END; R
i
K,
»‘ -_J
g << GETCOMMAND - READ COMMAND FROM KEYBOARD >> O
i -
g PROCEDURE GETCOMMAND(COMMAND) ; B
b .
Ei BYTE COMMAND; << RETURNED COMMAND CHARACTER >> il
- BEGIN
- INTEGER TEMP; << TEMP VARIABLE TO HOLD RETURNED VALUE >> .
3 MOVE MSGB := "ENTER COMMAND>> "; -
{] .
b "




N T " * R
4,
i
65 g
l PRINT(MSG,-16,%320) ; ]
TEMP := READ(MSG,-1); << READ CHAR FROM KEYBOARD >>
COMMAND := MSGB(0); << RETURN CHAR >>

END; << GETCOMMAND >>

o

o

)
£

<<O.ol..‘0¢¢.oc MAIN PROGRAH .'..l“...'..‘.'..ll.))

’
<< MAIN PROGRAM TO READ AND PROCESS COMMANDS >> \
- PRINTBANNER; << PRINT HEADING, VERSION NUMBER >> .
| INITIALIZE; << OPEN CONTROLLER'S PORT, ETC. >> ;
- HELP; << PRINT LIST OF COMMANDS > i
‘ << EXECUTE COMMANDS UNTIL QJIT >>
. GETCOMMAND(COMMAND); << READ FIRST COMMAND >> -
WHILE COMMAND <> "Q" DO
s BEGIN g
IF COMMAND = "S" << SEND A PACKET >> ;
THEN SEND d
" ELSE IF COMMAND = "R" << RECEIVE A PACKET >> 3
THEN RECEIVE
ELSE IF COMMAND = "E" << ENQUIRE >> :
. THEN ENQUIRE
5 ELSE IF COMMAND = "C" << CANCEL >>
THEN CANCEL :
- ELSE IF COMMAND = "H" << PRINT THIS LIST >> ~
K THEN HELP ]
' ELSE ERROR; << PRINT ERROR MESSAGE >> 1
N
I GETCOMMAND(COMMAND); << GET NEXT COMMAND >> 1
' END; << WHILE >> :
N
g END. << MAIN >>
i 5
3
7
'.1
-




T R R NN e P L —— A T S i v
Lo S B B PR B SE ST L s T . Pl R e . ] "1

66

M

Appendix 3 =

The file program for the VAX

e B¢ RN

b
.‘ *
e
] 9
,

" on
R S B

R L A T A L P MRS




Ty ryyy

TS YT WY

I

67

/% program to send files over the ethernet.

Called as: sendhp srcfile [destfile] to send a file to the hp3000
or gethp srefile [destfile] to read a file from the hp3000

The command gethp must be linked to this same program.
That is, compile the program as
cc ethernet.c -0 sendhp!
which puts the object code in the file sendhp. This must then be
linked to gethp using the command
'ln sendhp gethp'
which causes both of these names to point to the same file.

The destfile is optional and defaults to be the same as the srcfile.
If file name on the hp is not fully specified, it will

store the file in the public area or try to retrieve the file

from the public area. This public area is ETHERNET.SYS.

Returns an error code via call to exit( ) when program terminates.
Return of zero means all went ok.

&/

/% include program libraries #/
#include <stdio.h> /® standard i/0 library %/
#include <sgtty.h> /® library for tty set-ups #/
#include <signal.h> /® library for signals (time-out) #*/
/% define constants %/
#define TTY "/dev/tty02" /% port to connect controller to #/
#define PACKETSIZE 126 /% maximum size of packets %/
#define DATASIZE PACKETSIZE - 6 /% size of data in packet %/
#define MAXCOUNT 6 /% maximum number of tries before aborting

transmission attempts &/
#define OK 1 /% flag indicates transmission was Ok #/
#define NOTOK O /% flag indicates transmission was not OK %
#define TIMEOUT S5 /% time-out (in seconds) for read ®/
#define T 1 /% true flag 74
#define F 0 /% false flag ®/
#define VAX 0 /% flags to indicate which machine is %/
#define HP 1 /% the source of the file transfer ®/




it SRS ol S Thter tatamon
s T TR R T o
I P N L A

.y
"

5 PAREARCARE F SR

[.7' A P~ SEASERAH I”  ASRER
.

..................

#define ACKFILE
#define NAKFILE

#define DATAFILE
#define ENDFILE

#define ENDREPLY
#define SENDFILE

#define RECFILE

/% define command bytes

#define ACK 0x06
#define NAK 0x15
#define ENQ 0x05
#def'ine SEND 0x11
#define SOH 0x01

#define REC Ox12
#define CAN 0x18

/% define packet types #/

1 /% file packet received ok 74

2 /% packet not received ok, or A7
/% some other error &/

3 /% packet contains file data L7

5 /% end of file L7

6 /% ack for ENDFILE L7

f /% prepares receiver to send file ¥/
/% named in DATA part of packet #/

8 /% prepares receiver to read and ¥/
/% save file named in DATA part %/

for controller 74

/% acknowldgement - all ok #/

/® negative acknowledge - error has occured %/

/% enquiry command %/

/% send the following packet #/

/% start of header - device sending SOH is

requesting the packet-length 8/
/® receive packet from Ethernet %/
/®* cancel last receive request #/

/% define error codes returned by main program
/® these indicate status of program when it terminates, returned

/% via an exit(.) call.

#define NOERROR 0
#define BADARGS 1
#define BADOPENVAX 2
#define BADREMOTE 3
#define CONTDOWN 4
#define NOCONTOPEN 5
#define NOCONFIG 6
#define XMITERROR 7

8

#define BADOPENHP

/%
/%

no error - all ok W

incorrect number of args. in command line
can't open srcfile on VAX L7

remote machine not responding */
controller is not responding %/

can't open the controller's port %/

can't configure controller's port %/

error in xmit of file. packets not ack'ed
by remote host.

can't open srcfile on HP &/

/% declare golbal variables %/

68

®/
W4

&/

&/

L.

anad s .




- 2 st diace 4 - v LSl Mt i S et
NPy —— ﬁ.—‘:‘v—w—--'v' ‘.-x ."—-*.n'-- D o -~ e e T

69

char destaddress; /% address of destination controller %/

char srcaddress; /% address of source (this) controller %/
int controller; /% file descriptor of controller port %/
int timedout; /® flag to indicate if read has timed-out %/

/RIS AN RAEANNERRRRNARARNSANRNARRR N ARIRRRRARRRRRARRRRBRRRARAN )

- .t‘nrv- . . . » s a
i1 IR
P L . .

Oy . gn

:? /* main program - gets arguments from command line and calls appropriate
L routine to send/receive the file 8/
SRR main(arge,argv)

O int arge; /* command line argument count &/
F char *argv[]; /% argument values - ie. program

: P name and filenames %/

- {

i ) char srcfile[30]; /%* name of source file %/

'l char destfile[30]; /% name of destination file #/

’ int srcmachine; /% flag to indicate which machine is to
A be the source of the file. Determined
E L by the name the program was called
b with. 7
' int errorcode; /% error number to be returned #/

"

- /* get names of files and the source machine %/
i if ( (arge < 2) || (arge > 3) ) /% check number of args ¥
~ {
] fprintf(stderr,"Usage is: $s srcfile [destfile]\a",
s argv[0]);
b errorcode = BADARGS;
‘ }
b
.. else
éﬂ { /% find source machine %/

if (stremp(argv[0],"sendhp") == 0) /% matches #/
srcmachine = VAX;
else srcmachine = HP;

/® get name of source file ®/
strepy(srefile,argv(1]);

/% get name of destfile, defaults to srcfile %/

if (arge == 3) /% there is a destfile given ¥/
strepy(destfile,argv(2]);

else strecpy(destfile,srcfile);

AP USSRV ST RO



70

/®* init network addresses, open controller's port #/ 1

if ((errorcode = initialize()) == 0) /* no error %/
{

/% send or receive the {ile, as appropriate #/

if (srcmachine == VAX) ’ j
errorcode :
= sendfromvax(srcfile,destfile);
else errorcode = getfromhp(srcfile,destfile);
} ' b
}

exit(errorcode); k

} /* end of main program %/

ik

o
G
/% sendfromvax - procedure to send a file from the vax to the hp using g
the sendafile routine after initiating communication with the hp 3
over the net. Checks for errors if the file does not exist, etc. )
Returns 0 if sent ok, else returns an errorcode. ®/ T
sendfromvax(srcfile,destfile) 3
char srefile(]; /% name of file to be sent ¥/ &
char destfilel]; /% name to call file at destination %/ s
{
g int filenum; /% file number returned by open %/
= char packet[40]; /% packet used to initiate comm. %/
- int packlen; /% length of finished packet ¥*/
. int errorcode; /* returned error code #/
- :
Fe /% open the file #/ =
. if ( (filenum = open(srcfile,0)) == =1 ) /®* not opened ok ¥/
. (
" fprintf(stderr,"ERROR -~ can't open %s on VAX\n",srcfile);
- errorcode = BADOPENVAX; X
2 } 8
™ else
= { 4
. /% send RECFILE to initiate communication with the hp. B
§§ Includes destfile as data portion of packet. &/ )
4 4




- i 2 it g Jhadn Shadint sha Hhaddl - S dh Y odih S - L P T S
e S S e T TR e e e B - Dol f T .

.......

71
strepy(&packet[6],destfile);
assem(RECFILE,O0,strlen(destfile),packet,&packlen);
if (senderrorfree(packet,packlen) == NOTOK)

{
fprintf(stderr,

"Remote machine does not respond\n");
errorcode = BADREMOTE;

}
else . /% hp is now ready for this file %/
{
errorcode = sendafile(filenum);
close(filenum);
}

}

return(errorcode) ;

} /% end of sendfromvax #/

/% getfromhp - procedure to receive a file from the hp using
the recvafile routine after initiating communication with
the hp over the net.
If a file already exists with the same name, this routine
will append '.new' to the filename to avoid overwriting
the already existing file.
Returns 0 if the file is received 0K,
else returns an error code */

getfromhp(srcfile,destfile)

/® send a SENDFILE packet to initiate communication with the hp.
Includes srcfile name as data portion of the packet. &/

2 char srcfile(]; /% name of file to be recv'ed from hp %/

- char destfile[]; /®* name to call file at this end »

{ .. {

b - int filenunm; /® file number returned by creat &/

3 char packet[40]; /% packet used to initiate comm #/

- int packlen; /% length of finished packet L7
int errorcode; /% returned error code &/

) int packtype; /% type of packet recv'ed from

* . senderrorfree L7

[

P

3

3

; o stropy(&packet{6],srcfile);




\ g

T I

AR -+« DA

72

assem( SENDFILE,0,strlen(srcfile),packet,&packlen);
packtype = senderrorfree(packet,packlen);

if (packtype == NOTOK) /% not sent %/
{

fprintf(stderr,"Remote machine does not respond\n"); ~—
errorcode = BADREMOTE; e
} -
else /% check if hp is ready to send %
if (packtype == NAKFILE)
{

fprintf(stderr,
"Error: can't open %3 on remote machine\n",
srefile);
errorcode = BADOPENHP;
} -
else /% hp is now going to start sending the file ¥/ =

( ,
/% check if a file already exits with same name %/ .
if (open(destfile,0) 1= =1) /% if it exists %/ : =

/® rename file to be xxxx.new #/ e

strcat(destfile,".new");

-3
/® now create file and receive it from the net #/ e
filenum = creat(destfile,0755);

errorcode = recvafile(filenum); e
close(filenum); 24

}

return(errorcode) ; =

/% end of getfromhp %/

/% initialize - open controller's ports and init. network addresses #/

/% returns 0 if initialized ok, else raturns an error code &/ ﬂ;
initialize()
{

int errorcode; /®* error code to be returned %/

int temp; /% temp variable for address %

/® init controller's port #/

if ((errorcode = initcontroller()) == 0) /% opened ok ¥/
/% init network addresses %/

N - o L . - o [P PP I A S S Y




73

if ((temp = findaddress()) == =1) /* controller dead %/
{
fprintf(stderr,"Controller on VAX is dead\n");
errorcode = CONTDOWN;
}
else /% init addresses. assumes only 2 stations %/
if (temp ==z Oxif)
{

srcaddress = 0x1f;
destaddress = 0x2f;

B ) else
SR srcaddress = 0x2f;
) destaddress = 0x1f;
1

= ‘ return(errorcode) ;

KALEOSALIVE & - DACATMNE

/% sendafile - sends a file to the remote machine using a stop-and-wait

- protocol with positive acknowledgement and retransmission.

‘ n Enter this routine with the file descriptor (ie. the file must be
RS already opened) and the remote machine ready and waiting to

- receive the file. #/
.

2 sendafile(filenum)

E - int filenum; /® file number of opened file to send ¥/
y {

9 int errorcode; /% returns an errorcode L7

R char packet[PACKETSIZE]; /®* holds packets of file #/

E o int packlen; /* length of assembled packet %/

- int datalen; /% length of data portion #/

2 int seqnum = 1; /* sequence number of packets #/

int ackflag = ACKFILE; /® indicates if packets being ack'ed %/
/% send the file as packets while not end-of-file %/

. while ( ((datalen = read(filenum,&packet[6],DATASIZE)) > 0)
&% (ackflag == ACKFILE) )
Lo {
A .

S /% assemble and send the packets ¥/

TETEF -




rrre’
APLEPL S

D) ey

 oatEh S A AN ) SUIATEL LS I I B uPR Pl

i

ackflag = senderrorfree(packet,packlen);
seqnum = incseq(seqaum);

}
/% send "END" packet, wait for ack ¥/

assem(ENDFILE,seqnum,0,packet,&packlen);
ackflag = senderrorfree(packet,packlen);

/% send ENDREPLY, do not wait for ack %/

seqnum = incseq(seqnum);
assem(ENDREPLY, seqnum,0,packet,&packlen) ;
sendpacket(packet,packlen);

/% return error code #/

if (ackflag == ACKFILE)
errorcode = NOERROR;
else errorcode = XMITERROR;

return(errorcode);

} /% end of sendafile %/

/% recvafile ~ receives a file from the remote machine using
stop-and-wait protocol. Acks received packets and saves
non=-duplicated packets.

Enter this routine with the file descriptor

(ie. the file must be already created and opened)
and the remote machine already set-up to begin
sending data packets.

recvafile(filenum)

assem(DATAFILE,seqnum,datalen,packet,&packlen);

/% increment seq. num

a

8/

int filenum; /% file number of opened file in which to

store the incoming file.

char packet[PACKETSIZE]; /* received packet #/
int packlen; /% length of received packet
int packtype = DATAFILE; /* type of recv'ed pack ¢t

&/

*/
&/

P WP O A Y

T4

&/

/% all packets ack'ed #/

oy

-~

-




N e oe e b na ceas St b RS SUN A arat b arie A S et i s I AL A Y

75
int datalen; /% length of data portion 74
int seqnum; /® sequence number of recv'ed packet #/
int expectnum = 1; /% expected sequence number #/
int doneflag = F; /* indicates when done &/

/% receive, ack, and store packets untile ENDFILE received %/

while (packtype == DATAFILE)
{

if (recvpacktime(packet,&packlen) == OK)
i \

disassem(packet,&packtype,&seqnum,&datalen);
if ((packtype == DATAFILE) &% (seqnum == expectnum))
{

write(filenum,&packet[6],datalen);
expectnum = incseq(expectnum);
}

/®* ack the packet */

assem(ACKFILE, seqnum,0,packet,&packlen);

sendpacket(packet,packlen);

}
}

/* perform end-dally sequence of protocol
Wait for ENDREPLY (to ACK of ENDFILE) or timeout,
whichever comes first.
Timeout or ENDREPLY both mean done. If recv'ed packet
is ENDFILE, serder didn't get ACK, so retransmit it. 74

while (doneflag == F)
if ( recvpacktime(packet,&packlen) == OK )

{
disassem(packet,&packtype,&seqnum,&datalen);
if (packtype == ENDREPLY) /% got ack, so done ¥/
doneflag = T;
else /% retransmit ACK %/
{
assem( ACKFILE, seqnum,0,packet,&packlen);
sendpacket(packet,packlen);
}
}
else /% timed out, so done %/
f doneflag = T;
: return(NOERROR) ;
# i } /% end of recvafile %/
5
-
ﬁ T
X
i. -

- . ot . - o ~ r . ¥ ‘ . - ¥ S -
. - - AP, N NP PV Y G PR TR YO ST YR TN S U VP WP SN NSO SUUSNPIHT PR WREY L R



I 0 o Ct G SRR & 8¢ o

e 4 the)

76

/% incseq - increment the sequence number. Returns the new sequence
number. 8/

incseq(n)
int n; /% number to be incremented ¥/

n=(n+ 1) % 256; /% modulo 256 #/
return(n);

/® senderrorfree - sends a packet and waits for an ACK
from the receiver.
If no ACK, times out and retransmits until a packet
comes or it has tried MAXCOUNT times.
Returas type of packet received, if one was received,
or NOTOK if no packet is ever received &8/

senderrorfree(packet,packlen)

char packet[]; /% packet to be sent #/
int packlen; /% length of the packet %/

char rcvpack[50]; /% received ACK packet #/
int rlength; /% length of ACK packet ¥/
int count = 0; /% counter for number of xmit tries %/
int rtnflag = NOTOK; /% flag to be returned #/

/% send the packet %/
sendpacket(packet,packlen);

/% wait for ACK with time out, re-xmit up to MAXCOUNT times %/

while ( ((rtnflag = recvpacktime(rcvpack,&rlength)) != OK)
&& (++count < MAXCOUNT) )
sendpacket(packet,packlen); /®* retransuit packet %/

/® check if a packet was received #/
if (rtnflag == OK) /% packet recv'ed %/
rtnflag = revpack(2]; /% packet type ®/

/% return the flag %
return(rtnflag);

.1-' ) 5
o z a

*

-
e
-




F&ﬁA'E ........ T Ty e e I T T T *1
b
(s
M. 7
(
N /% assem - assembles a packet into the required form, ie. prepends
: addresses, etc. onto data already stored in "top" portion of
packet. &/
assem(packtype,seqnum,datalen,packet,packlen)
int packtype; /% type of packet %/
int seqnum; /% sequence number ¥/
int datalen; /% length of data portion %/
char packet[]; /% returns assembled packet; enter
with data already in packet A7}
int *®packlen; /* returns length of assembled packet #/
{
/% assemble the packet #*/
packet[0] = destaddress;
packet[1] = srcaddress;
packet[2] = packtype;
packet[3] = seqnum;
packet[4] = datalen / 256; /% truncates fraction %/
packet[5] = datalen - (256 * packet[4]);

/% return packet length %/
%packlen = datalen + 6;

} /% end of assem %/

—~ /% disassem - disassembles a packet.
Returns via pointers the packet type, the sequence number,
and the length of the data portion. L7}

disassenm(packet,packtype,seqnum,datalen)

T TIrITYTTTYY
VT, v ;

1

char packet[]; /% packet to be disassembled #/

int #packtype; /®* returns packet type #/
int #segnum; /% returns sequence number %/
int #*datalen; /% returns length of data portion #/
{
‘I int thigh; /% temporaries for type conversion %/

int tlow;

/% disassemble the packet #/

P S SN S T e L PPy . — " G RUROT YU G G W TAIP U S L PRy - ,,_N_._H_‘_‘__‘,‘,_,-...I..__,.A&_*..,_.,_J




78

%packtype = packet[2];

%seqnum = packet[3] & 0377; /*® only want lower 8 bits %/ " q
thigh = packet[4] & 0377; /% no sign extension %/
tlow = packet[5] & 0377; /% no sign extension %/
%datalen = 256 ® thigh + tlow;

/% sendpacket - send a single packet. addresses are embedded within
the packet. returns OK if good transmission, NOTOK otherwise #/

sendpacket(packet,length)

char packet[]; /* packet to be sent %/
int length; /% length of packet ¥/
{

char reply; /% controller's replies to host &/

char status; /% status byte from controller %/

int xmitflag = NOTOK; /®* hold OK or NOTOK #/

char len_low; /% low=-order byte of length %/

char len_high; /% high-order byte of length #/ -
int {; /% index in loop ¥/ .

/% split length into high~ and low-order parts %/ & |

len_high = length / 256; /% truncates fraction %/
len_low = length -~ (len_high ®* 256); N

/® ready controller to xmit %/

L
sendcontroller(SEND); i
reply = readcontrecller(); =]
status = readcontroller();

if (reply == SOH) /% controller ready %/ 2
{

sendcontroller(len_low); "
sendcontroller(len_high); Y
reply = readcontroller(); '
status = readcontrcller();

if (reply == ACK) /% controller ready %/ -
{

for (1=0; i<length; ++i) /* send packet ¥/ <)
sendcontroller(packet{i]); e
reply = readcontroller();

e PRI I . e P PR W s Y Y S P - A B D S Bt B lAJ




_____ e g e e e 'S g asies Arue Arel el amas Su St Mg bec Camary o~ N T R i A e

79

status = readcontroller();
if (reply == ACK) /% it worked %/
xmitflag = OK;
}
}
return(xmitflag);

/% recvpacket - receives a packet from the ethernet with this
stations's address or the broadcast address.
returns OK if recv'd OK, NOTOK otherwise.
values of packet and length returned via pointers
cancels receive command if not received OK 74

recvpacket(packet,plength)

char packet[]; /* contents of packet received #*/
int *®plength; /% pointer to length. Returns length of
packet to calling routine 8/

{

char reply; /® controller's replies to host 74

char status; /% status byte from controller &/

char len_low; /#®* low-order byte of length 74

char len_high; /% high~order byte of length 8/

int 1; /% index in loop W74

int revflag = NOTOK; /®* holds OK or NOTOK L7

/% tell controller to receive packet #/

sendcontroller(REC);
reply = readcontroller();
status = readcontroller();

/%* check if packet recv'd 0K #/

if (reply == ACK) /% packet OK %/
{
/% read length %/
sendcontroller(SCH);
len_low = readcontroller();
len high = readcontroller();
sendcontroller(ACK);

/% read the packet #/
%plength = (256 * len high) + le.n_low;
for (i=z0; 1 < #plength; ++1i)




4
4
80
.
packet[i] = readcontroller();
sendcontroller(ACK); .
revflag = 0K; 3
}
else cancel(); /% not recv'd ok %/ .
return(revflag);
1 /® recvpacktime - receives a packet with time-out. Returns OK
3 if packet received ok, or NOTOK if packet damaged or
f! time-out occurred.
o Values of packet and plength are returned via pointers.
k- It cancels the receive request if no received ok or time-out.
= L7
2 recvpacktime(packet,plength)
65 char packet[]; /% contents of packet received %/
- int #®plength; /* pointer to length. Returns length of
" packet to calling routine &/
. {
int reply; /% controller's replies to host L7
int status; /% status byte from controller &/
char len low; /% low-order byte of length L7
-2 char len high; /#* high-order byte of length L7
o int {; /% index in loop /
- int rcvflag = NOTOK; /® holds OK or NOTOK */
/% tell controller to receive packet #/
- sendcontroller(REC) ;
- if ((reply = read_timeout()) == =1) /% time-out occurred #*/
- reply = NAK;
2 else status = readcontroller(); /% read next character #/
= /% check if packet recv'd OK %/ .T
kS if (reply == ACK) /% packet OK #*/ -
{ -
" /% read length %/ 1
. sendcontroller(SOH); -

- len_high = readcontroller();

v len_low = readcontroller();
sendcontroller(ACK); ;




v G
.

..........................

81

/®* read the packet ¥/
#plength = (256 * len_high) + len_low;
for (i=0; 1 < ¥plength; ++i)
packet[i] = readcontroller();
sendcontroller{ACK);
| rcvflag = OK;

else cancel(); /® not recv'd OK #/

return(revflag);

/® cancel - send cancel command to controller %/

cancel()

{
char reply; /% controller's reply to CAN ¥/
char status; /% also sends status byte L7

/®* send CAN, read reply and status %/

sendcontroller(CAN);
reply = readcontroller();
status = readcontroller();

/% £ind the ethernet station address of the controller ¥/
/% uses the ENQ command. returns value of address ®/
/% or -1 if controller doesn't respond, je. times-out. ¥/

findaddress()

{
int status; /% status byte re. rned from controller ¥/
/% send ENQ to controller #/

sendcontroller(ENQ);




82

/® read status, read and return address %/

if ((status = read_timeout()) != -1) /* no time out ¥/
return(readcontroller()); /% address byte %/
else return(~1); /% time out, so return -1 for error ¥/

/® initcontroller - open and init. tty port to talk to controller ¥

initcontroller()

{
/% structure to initialize tty port to controller #/

static struct sgttyd ttyb = {
B9600, B9600,

0, 0,
RAW | ANYP
b -
int errorcode = 0; /% returned error code ¥/

/% open controller's tty port 8/

if ( (controller = open(TTY,2)) == =1) /#* couldn't open %/
\ {
fprintf(stderr,"Couldn't open controller's port\n");
fprintf(stderr,
"It must be busy (or dead). Try again later\n");
errorcode = NOCONTOPEN;

. }

& else /%* opened OK so configure port for RAW, 9600 baud #/

éi if (stty(controller,&ttyb) 1= 0) /®* couldn't configure %/
{

B fprintf(stderr,

"Couldn't configure controller's port.\n");
errorcode = NOCONFIG;
- }
Ei else /% set for exclusive access %/
& ioctl(controller, TIOCEXCL,0);

return(errorcode);

PP SRS S G VA

R

Al

5.
3
Ty oY

L

, .
ra
taln’a

[



Kl 5T ,..1
—‘1 !

DA SN PO

§ 83
!' /% sendcontroller - send a byte to controller 3%/
A
F sendcontroller(byte)
i char byte; /% byte to be sent #/
{

- /® send the byte, print error if not sent OK ¥/

if (write(controller, &byte, 1) 1= 1)
fprintf(stderr,®Can't write controller\n");

/% readcontroller - returns byte read from controller #/

readcontroller()

{
f o char byte; /% byte read in %/

/% read byte, print error if not read OK #/

if (read(control’er, &byte, 1) 1= 1)
fprintf(stderr,™Can't read controller\n");
- else return(byte);

/% read from controller with time-out. returns -1 if time-out,

i ot e aargie b s aan

else returns byte read. ®/
- read_timeout()
f - int byte; /% byte read from controller #/
. int onalrm(); /% procedure when time-cut occurs ¥/

/% set-up signal, alarm for TIMEOUT seconds ®/

timedout = F;
signal(SIGALRM, onalrm);

-
o~ . - s
[ N

alarm(TIMEOUT); /% set alarm W74
read(controller,&byte,1);
if (timedout == T) /% time-out occurred %/

- - - R . . . Lottt L, - - P “ e PR o o
LI T Nar—. . desednssdetndm ateindesntadatdnnsinsidestdmteumimtiandeninnndmaiintitmnmnaianbentiontinmdmdhmi dhdnadieid



RETEAON ! ST
- . . R4 e e e s

byte = -1;

B 2R s st b b b 0 ke g Sy et -

alarm(0); /% turn off alarm ¥/

return(byte);

/* sets time-out flag to T when time-out occurs

onalrm()

{
}

timedout = T;

*/

M YO SRR YU P2

84

PN P S BN TP e S

S




85

e
M-
. Appendix 4

The network daemon for the HP 3000




86

$CONTROL USLINIT

BEGIN
b COMMENT:
THIS PROGRAM SENDS AND RECEIVES FILES OVER THE ETHERNET
USING THE 'ETHERNET FILE TRANSFER PROTOCOL.'
IT IS INTENDED TO RUN CONTINUOUSLY AS A STREAMED JOB AND .
TAKES ITS COMMANDS TO SEND/RECEIVE FILES BY LISTENING TO ‘
THE NET.
ERROR MESSAGES ARE DIRECTED TO THE SYSTEM CONSOLE.

[
e
[

| PR

END OF COMMENT;

(CRARBERRRRBARNBRBRARBRRNABHRARFARARNFRRABARRRRRRFABARARRERRRRRRD D

<< GLOBAL VARIABLE DECLARATIONS >>

INTEGER CONTIN; << FILE # OF CONTROLLER INPUT PORT >>

INTEGER CONTOUT; << FILE # OF CONTROLLER OUTPUT PORT >>

INTEGER DESTADDRESS; << ADDRESS DESTINATION CONTROLLER >>

INTEGER SRCADDRESS; << ADDRESS SOURCE CONTROLLER >>

BYTE ARRAY MSGB(0:80); << I/0 BUFFER FOR TERMINAL >>

LOGICAL ARRAY MSG(®*)=MSGB(0);<< PRINT BUFFER -~ "WORD" EQUATE >>

INTEGER TIMEDOUT; << FLAG INDICATES THAT A TIME-OUT >>
<< OCCURRED WHEN READING CONTROLLER >>

INTEGER RENAMENUM; << USED TO GIVE A UNIQUE NAME TO A >>
<< FILE IF ONE ALREADY EXISTS WITH >>
<< THE SAME NAME > ?

ra e Y Tone (3 R ad N 3
i o e i G VT

. . . . * . ' . « . K} .

R A y .. R

<< VARIABLES USED BY MAIN PROGRAM ONLY >>

BYTE ARRAY COMPACK(0:50); << COMMAND PACKET FROM REMOTE MACH. >> R
INTEGER COMLENGTH; << LENGTH OF COMPACK »>>
INTEGER RFLAG; << RECEIVE FLAG FOR COMPACK >> R
INTEGER COMTYPE; << TYPE OF COMMAND RECV'ED >> -]
INTEGER COMSEQNUM; << SEQUENCE NUMBER OF COMPACK >>
INTEGER NAMELEN; << LENGTH OF NAME IN DATA PORTION >>
<< OF COMPACK >

&

T
(it

LA
Ol

b Praaadd

S

<< DEFINE PACKET TYPES »>>

EQUATE ACKFILE
NAKFILE
DATAFILE
ENDFILE
ENDREPLY
SENDFILE

1, << PACKET RECEIVED OK BY RECEIVER END >>
2, << REQUESTED FILE DOES NOT EXIST >> v
3, << PACKET CONTAINS FILE DATA > -
5, << END OF FILE >>
6, << ACK FOR ‘ENDFILE® >
7, << PREPARES RECEIVER TO SEND FILE NAMED >>

<< IN 'DATA' PORTION OF PACKET »

NP

) P SERER S

) -, N . - O ol P S G S |
. . . RN - . - . . . PP P SR P e W o A ik adnasniniin i, s,
t'm . A P P AP Y . e e




RECFILE =

<< DEFINE CONSTANTS

EQUATE PACKETSIZE
DATASIZE =
MAXCQUNT

OK

NOTOK
TIMEOUT
NOTIMEOUT
TRU

FALS

.....

8

.
’

o EQUATE ACK = $(16)06,
; NAK = %(16)15,
S ENQ = %(16)05,
S SND = %(16)11,
SOH = %(16)01,
REC = %(16)12,
CAN = %(16)18;

>>

<« P

REPARES RECEIVER TO READ AND SAVE >>

<< FILE NAMED IN 'DATA' PORTION OF PACKET >>

144
<«
144
<«
144
144
<L
<«

<< DEFINE COMMAND BYTES TO/FROM CONTROLLER >>

ACKNOWLEDGEMENT -~ ALL OK >>

NEGATIVE ACK - ERROR HAS OCCURED >>
ENQUIRE - RETURN STATUS & ADDRESS >>
SEND THE FOLLOWING PACKET >>

START OF HEADER - DEVICE SENDING IS >>
REQUESTING THE PACKET LENGTH >>
RECEIVE PACKET FROM ETHERNET >>

CANCEL LAST RECEIVE REQUEST >>

= 126, << MAXIMUM SIZE OF PACKETS >>
PACKETSIZE -~ 6, << SIZE OF DATA IN PACKET >>

<<
<<
<«
<<
<<
<L
144
<<

<< INTRINSIC DECLARATIONS >>

MAXIMUM NUMBER OF TRIES BEFORE »>>
ABORTING TRANSMISSION ATTEMPT 5>
FLAG FOR "OK™ >>

FLAG FOR "NOTOK"™ >>

'READ' TIME-QUT INTERVAL >>

PARAM FOR NO TIME-QOUT ON READ »>>
TRUE FLAG >>

FALSE FLAG >>

~ INTRINSIC READ,PRINT,BINARY,FREAD,FWRITE,FOPEN,FSETMODE,
b FCONTROL, IOWAIT,GETPRIVMODE, GETUSERMODE, ASCII,
FCLOSE,FRENAME, PRINTOP;

{<¢e¢eveeee PROCEDURE DECLARATIONS .ccevcevenesod>

<< RWCNTLR - READ/WRITE FROM CONTROLLER >>

87




i

OCRL COMPUTER NETWORK IMPLEMENTATION USING ETHERNET
ILLINOGIS UNIV RT URBANA C OURDINRTED SCIENCE LAB
J LILJA AUG 82 R-946 N00G39-80-~C-05!

F/G 572 NL




e
X

‘

e et

TRy ey e
P MY

-

-

L2 A Jnte St e )

S DECRGS

.

RPN e
~

ol

- “‘_ -
- - .
S

~

.-
b
).
-

st s...‘_ T A e A
v 0 : Ct t. - . . .
ca e B

[ o | SIS ST V)

IR
r‘:.._;,‘_.

B B T -
.,... .. . u ...\.-. Y >
TR H.!. PERARIIR TN LN I LPE

FEE
<EFEN

333 mmmnuum

2l

i s

“‘
—_—
—
=
=

25

3l

\\\\\
I
I

R R AT A ML St ol . .
R PO sealy e Tt i T -y
POV ST RPN ST S D o , k,. Vleral, o
smaed s L L.
P I I S W L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

R vy e v
FOELI-LA ..M...-. . Fr. ARARARS
- PRI XTI IRLN




I
&)

88

- ]
v W e
el B

o REINE R ]

_ COMMENT: BECAUSE OF THE LACK OF BUFFERING ON INPUT PORTS,
o MUST FIRST SET-UP READ, THEN WRITE, THEN FINISH
~ READ. THAT IS, CONTROLLER RESPONDS TOO QUICKLY
FOR HP TO CATCH IN NORMAL I1/0 ;

PROCEDURE RWCNTLR(INBUFFB,INLEN,OUTBUFFB,OUTLEN,TIME);

VALUE OUTLEN, << PASS THESE BY VALUE >>
TIME,
INLEN;

BYTE ARRAY INBUFFB; << INPUT BUFFER TO CONTROLLER >>

<< RETURNS WITH DATA READ FROM CONTROLLER >>
INTEGER INLEN; << NUMBER OF BYTES TO READ FROM CONT >>
BYTE ARRAY QUTBUFFB; << QUTPUT BUFFER TO CONTROLLER >>

<< ENTER WITH DATA TO SEND TO CONT >>

INTEGER OUTLEN; << NUMBER OF BYTES TO SEND TO CONT >>
INTEGER TIME; << TIME-OUT INTERVAL - 0 MEANS NO TIME-OUT >>
BEGIN

LOGICAL ARRAY INBUFF(#)=INBUFFB(0); << EQUATE TO ELIMINATE >>
LOGICAL ARRAY QUTBUFF(*)=OUTBUFFB(0); << WARNING MESGS >>
INTEGER DUMMY; << HOLDS RETURNED VALUE FROM IOWAIT, FREAD >>
INTEGER PARAM; << USED IN FCONTROL FOR TIMEOUT >>

<< INIT. TIME-OUT FLAG >>
TIMEDOUT := FALS;

<< SET TIME~QUT INTERVAL »>>
PARAM := TIME;
FCONTROL(CONTIN,4,PARAM);

<< SET-UP READ, NO WAIT FOR FINISH >>
DUMMY := FREAD(CONTIN, INBUFF,~INLEN);

<< WRITE BUFFER TO CONTROLLER >>
FWRITE(CONTOUT,OUTBUFF,-OUTLEN,%320);

<< FINISH READ, RETURN BUFFER AND LENGTH >>
DUMMY := IOWAIT(CONTIN,INBUFF);
IF < THEN
BEGIN
TIMEDQUT := TRU;
END;

END; << RWCNTLR >>




£
~

]

89

ey
SO RIIN
«

<< FIND ETHERNET STATION ADDRESS OF THE CONTROLLER USING ENQ >>
<< COMMAND. RETURNS ADDRESS IN 'ADDRESS' PARAMETER. >»

PROCEDURE FINDADDRESS(ADDRESS) ;
INTEGER ADDRESS; << RETURNS ETHERNET STATION ADDRESS >>

BEGIN
* BYTE ARRAY BUFF(0:1); << I/0 BUFFER FOR CONTROLLER >>

<< LOAD 'ENQ' INTO BUFFER >>
BUFF(0) := ENQ;

<< SEND TO CONTROLLER, READ STATUS AND ADDRESS >>
RWCNTLR(BUFF,2,BUFF, 1, TIMEOUT) ;

<< RETURN ADDRESS IF NO TIME-OUT >>
IF TIMEDOUT = FALS
THEN ADDRESS := INTEGER(BUFF(1))
ELSE ADDRESS := 0;

END; << FINDADDRESS >>

<< INITIALIZE CONTROLLER'S PORTS, INIT STATION ADDRESSES >>
PROCEDURE INITIALIZE;

BEGIN
INTEGER LENGTH; << TEMP STORAGE OF RETURNED VALUE FROM READ >>
INTEGER CNTLCODE; << CONTROL CCDE FOR FCONTROL >>
BYTE ARRAY TTYIN(0:8); << INPUT PORT >>
BYTE ARRAY TTYOUT(0:8); << OUTPUT PORT >>
INTEGER TEMP; << TEMP VARIABLE FOR ADDRESS INITIALIZATION >>

<< INIT TTYIN AND TTYOUT >>

MOVE TTYIN := "ENETIN;";
MOVE TTYOUT := "ENETOUT;";

<< OPEN AND INIT CONTROLLER'S PORTS >>

GETPRIVMODE; << FOR NO=WAIT I/0 >>
CONTIN := FOPEN( ,%604,%84324,-36,TTYIN);




90

IF <> THEN BEGIN << CAN'T OPEN >>
MOVE MSGB := "ETHERNET - CAN'T OPEN INPUT PORT";
PRINTOP(MSG,-32,0) ;

END;

GETUSERMODE; << NO MORE NEED FOR PRIV MODE >>

CONTOUT := FOPEN( ,%604,%324,-36,TTYOUT);

IF <> THEN BEGIN << CAN'T OPEN >»
MOVE MSGB := "ETHERNET - CAN'T OPEN OUTPUT PORT";
PRINTOP(MSG,-33,0);

END;

CNTLCODE := $07T4022; << SPEED, TERMTYPE >>
FCONTROL(CONTIN,37,CNTLCODE); << ALLOCATE TERMTYPE 18 AT >>
FCONTROL( CONTOUT,37,CNTLCODE) ; << 9600 BAUD >

FSETMODE(CONTIN,%4); << INHIBIT AUTO CR-LF ON INPUT >>

FCONTROL(CONTIN,13,CNTLCODE); << ECHO OFF >>
FCONTROL( CONTOUT, 13,CNTLCODE) ;

FCONTROL(CONTIN,20,CNTLCODE); << DISABLE INPUT TIMER >>

FCONTROL(CONTIN,28,CNTLCODE); << DISABLE BLOCK MODE >>
FCONTROL( CONTOUT, 28, CNTLCODE) ;

FCONTROL(CONTIN,27,CNTLCODE); << ENABLE BINARY TRANSFERS >>
FCONTROL (CONTOUT, 27 , CNTLCODE) ;

CNTLCODE := 0;
FCONTROL(CONTIN,36,CNTLCODE); << NO PARITY, FULL 8 BITS >>
FCONTROL ( CONTOUT, 36 ,CNTLCODE) ;

<< INIT. SRC AND DEST ADDRESSES. ASSUMES ONLY 2 STATIONS >>

FINDADDRESS(TEMP) ;
IF TIMEDOUT = TRU << CONTROLLER DEAD >>
THEN BEGIN << PRINT ERROR MESSAGE >>
MOVE MSGB := "ETHERNET CONTROLLER IS DEAD. TRY RESETTING.";
PRINTOP(MSG,-43,0);
END << THEN >> i
ELSE << INIT. ADDRESSES >> 3
IF TEMP = $(16)1F

THEN BEGIN
SRCADDRESS := $(16) 1F; '
DESTADDRESS := %$(16)2F; ~
END
ELSE BEGIN |

SRCADDRESS := %(16)2F;
DESTADDRESS := %(16)1F;

ad




......................
.....................

~~~~~~~

.............................. LT T e e e

91

END;

END; << INITIALIZE >>

<< SENDPACKET - SEND A SINGLE PACKET. ADDRESSES ARE EMBEDDED >>
<< WITHIN THE PACKET. RETURNS XMITFLAG = OK IF GOOD >
<< TRANSMISSION, NOTOK OTHERWISE. LEAVES PACKET UNCHANGED. >>

PROCEDURE SENDPACKET(PACKET,LENGTH,XMITFLAG) ;

VALUE LENGTH; << PASS BY VALUE >>
BYTE ARRAY PACKET; << PACKET TO BE SENT WITH EMBEDDED ADDRESS >>
INTEGER LENGTH; << LENGTH OF PACKET IN BYTES >>
INTEGER XMITFLAG; << RETURNS 'OK' OR 'NOTOK' »>>
BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR SENDING COMMANDS >>
<< TO/FROM CONTROLLER >>

<< INIT XMITFLAG >>
XMITFLAG := NOTOK;

<< READY CONTROLLER TO XMIT BY SENDING 'SND'. >»
<< READ REPLY AND STATUS »

BUFF(0) := SND;
RWCNTLR(BUFF,2,BUFF,1,TIMEOUT); << SEND 1 BYTE, READ 2 BYTES >>

IF BUFF(0) = SOH AND TIMEDOUT = FALS << REPLY IS SOH >»>
THEN BEGIN << SEND LENGTH, READ REPLY AND STATUS >>
BUFF(0) := BYTE(LENGTH.(8:8)); << LOW-ORDER 8 BITS >>
BUFF(1) := BYTE(LENGTH.(0:8)); << HIGH-ORDER 8 BITS >>
RWCNTLR(BUFF, 2,BUFF,2,TIMEOUT); << READ/WRITE 2 BYTES >>

IF BUFF(0) = ACK << CONTROLLER READY FOR PACKET >>
THEN BEGIN << SEND PACKET, READ REPLY, STATUS >>
RWCNTLR(BUFF,2,PACKET,LENGTH, TIMEOUT) ;
IF BUFF(0) = ACK << XMIT OK >»
THEN XMITFLAG := OK;
END;
END;

END; << SENDPACKET >>

...

92

<< CANCEL -~ SEND CANCEL COMMAND TO CONTROLLER >>
PROCEDURE CANCEL;

BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR COMMANDS TO/FROM CONT >>

<< SEND 'CAN', READ REPLY AND STATUS >>
BUFF(0) := CAN;

RWCNTLR(BUFF,2,BUFF,1,TIMEOUT); << SEND 1 BYTE, READ 2 >>
END; << CANCEL >>

<< RECVPACKET -~ RECEIVES A PACKET FROM THE ETHERNET WITH THIS)>>
<< STATION'S ADDRESS OR THE BROADCAST ADDRESS. RETURNS WITH > .
<< RCVFLAG = OK IF RECEIVED OK, NOTOK OTHERWISE. CANCELS > ;I
<< RECEIVE COMMAND (WITH 'CAN') IF NOT RECEIVED OK. > i
<< ALLOWS SETTING OF TIME-OUT INTERVAL FOR READ OF CONTROLLER >>

PROCEDURE RECVPACKET(PACKET,LENGTH,RCVFLAG,TIME);
VALUE TIME; << PASS BY VALUE >> tﬂ

BYTE ARRAY PACKET; << RETURNS WITH PACKET RECEIVED >>

INTEGER LENGTH; << RETURNS LENGTH OF RECEIVED PACKET >>
INTEGER RCVFLAG; << RETURNS *OK' OR 'NOTOK' >>
INTEGER TIME; << INDICATES TIME-OUT INTERVAL TO WAIT FOR >>
<< PACKET. 0 MEANS WAIT FOREVER. > .
o
BEGIN
BYTE ARRAY BUFF(0:1); << BUFFER FOR SENDING COMMANDS >>
<< TO/FROM CONTROLLER >

<< INIT. FLAG >>
RCVFLAG := NOTOK;

R Sy

<< TELL CONTROLLER TO RECEIVE PACKET. WAITS UNTIL PACKET >>
<< IS RECEIVED. >

v e
s

BUFF(0) := REC;

N

............

93

RWCNTLR(BUFF, 2, BUFF, 1,TIME) ; << SEND 1 BYTE, READ 2 BYTES >>
o << CHECK IF PACKET RECEIVED 0K >>

IF BUFF(0) = ACK AND TIMEDOUT = FALS << PACKET OK >>
THEN BEGIN
R << SEND 'SOH', READ LENGTH >>
- BUFF(0) := SOH;
RWCNTLR(BUFF,2,BUFF,1,TIME); << SEND 1 BYTE, READ 2 BYTES >
LENGTH := 256 % BUFF(1) + BUFF(0);

EESE atn e gt aie Sesetaaen
T ' -

<< SEND 'ACK', READ PACKET »
BUFF(0) := ACK;
RWCNTLR(PACKET, LENGTH, BUFF, 1, TIME) ;

<< SEND CONTROLLER FINAL 'ACK' >>
BUFF(0) := ACK;
RWCNTLR(BUFF,0,BUFF,1,TIME); << SEND 1 BYTE, READ NO BYTES >>
<< RETURN FLAG 'OK' >>
RCVFLAG := OK;
END << THEN >
ELSE CANCEL; << NOT RECEIVED OK, SO CANCEL 'REC' >>

END; << RECVPACKET >>

<< ASSEMBLE ~ ASSEMBLE A PACKET INTO THE REQUIRED FORM >>
<< ENTER ROUTINE WITH DATA ALREADY STORED IN HIGH PART OF PACKET >>

PROCEDURE ASSEM(PACKTYPE,SEQNUM,DATALEN,PACKET,PACKLEN) ;

VALUE PACKTYPE, << PASS THESE BY VALUE >>
SEQNUM,
DATALEN;
INTEGER PACKTYPE; << TYPE OF PACKET >>
INTEGER SEQNUM; <<{ SEQUENCE NUMBER >>
INTEGER DATALEN; << LENGTH OF DATA PORTION >>
BYTE ARRAY PACKET; << RETURNED ASSEMBLED PACKET >>
INTEGER PACKLEN; << RETURNED LENGTH OF ASSEMBLED PACKET >>
BEGIN

<< ASSEMBLE THE PACKET >>

PACKET(0) := BYTE(DESTADDRESS);

T T

PACKET(1) := BYTE(SRCADDRESS);

PACKET(2) := BYTE(PACKTYPE);

PACKET(3) := BYTE(SEQNUM);

PACKET(4) := BYTE(DATALEN.(0:8)); << HIGH-ORDER 8 BITS >>
PACKET(5) := BYTE(DATALEN.(8:8)); << LOW-ORDER 8 BITS >>

<< RETURN PACKET LENGTH >>
PACKLEN := DATALEN + 6; << ADD HEADER BYTES >>

END; << ASSEM >

<< DISASSEM - DISASSEMBLE A RECEIVED PACKET INTO COMPONENT PARTS >>
PROCEDURE DISASSEM(PACKET,PACKTYPE, SEQNUM,DATALEN) ;

BYTE ARRAY PACKET; << PACKET TO BE DISASSEMBLED >>

INTEGER DATALEN; << RETURNED LENGTH OF FDATA >>
INTEGER PACKTYPE; << RETURNED TYPE OF PACKET >>
INTEGER SEQNUM; << RETURNED SEQUENCE NUMBER >>
BEGIN

<< DISASSEMABLE THE PACKET >>

PACKTYPE := INTEGER(PACKET(2));

SEQNUM := INTEGER(PACKET(3));

DATALEN := INTEGER(256 ® PACKET(4) + PACKET(5));

END; << DISASSEM >>

<< INCSEQ - INCREMENT A SEQUENCE NUMBER >>

PROCEDURE INCSEQ(N); 'E
INTEGER N; ;
BEGIN !

N := (N + 1) MOD 256;
END; << INCSEQ > R

95

<< RENAME - RENAMES A FILE BY ADDING OR REPLACING THE LAST
CHARACTER IN THE FILENAME WITH THE ASCII EQUIVALENT OF
THE GLOBAL VARIABLE RENAMENUM.
A FILENAME IS OF THE FORM 'FILENAME.GROUP.ACCOUNT;'
WHERE THE GROUP AND ACCOUNT ARE OPTIONAL. >»

PROCEDURE RENAME(FILENUM,OLDNAME) ;

INTEGER FILENUM; << FILE DESCRIPTOR >>

BYTE ARRAY OLDNAME; << OLD NAME OF THE FILE >>

BEGIN :
BYTE ARRAY NEWNAME(0:30); << NEW NAME OF FILE >>
INTEGER NEWI; << INDEX FOR NEWNAME >>
INTEGER OLDI; << INDEX FOR OLDNAME >>
INTEGER TEMP; : << TEMP. FOR USE IN ASCII CALL >>
<< MOVE OLD NAME INTO NEW NAME UNTIL FIND ; OR . >
OLDI := 0;
NEWI := 0;
DO BEGIN

NEWNAME(NEWI) := OLDNAME(OLDI);
NEWI := NEWI + 1;
OLDI := OLDI + 1;
END
UNTIL OLDNAME(OLDI) = ";™ OR OLDNAME(OLDI) = "™." ;

<< IF 8 CHARS. IN FILENAME, REPLACE LAST CHAR. WITH RENAMENUM,
ELSE APPEND RENAMENUM TO FILENAME. >

IF OLDI = 8
THEN << REPLACE LAST CHAR >>
TEMP := ASCII(RENAMENUM, 10,NEWNAME(NEWI - 1))
ELSE BEGIN << APPEND NEW CHAR >>
TEMP := ASCIY/RENAMENUM,10,NEWNAME(NEWI));
NEWI := NEWI + 1; << POINT TO NEXT CHAR. >>
END; << ELSE »

<< MOVE REMAINING CHARS. >>

DO BEGIN
NEWNAME(NEWI) := OLDNAME(OLDI);
NEWI := NEWI + 1;
OLDI := OLDI + 1;
END
UNTIL OLDNAME(OLDI) = ";" ;

..................................

‘a’® e . . - - ~ T- . - -
LI AP NI Y e, . . ot e e
(R N I TR R I N DA LI AP IR SIS . S RIS A W PRV VNPT G 'S ‘_LJL_-"L'_:‘_:. M R A ST SR, .

.................

.......................
............................

<< APPEND A ; »
NEWNAME(NEWI) := ";" ;

<< RENAME THE FILE >>
FRENAME(FILENUM, NEWNAME) ;

<< INCREMENT RENAMENUM >>
RENAMENUM := (RENAMENUM + 1) MOD 10;

END; << RENAME >>

<< SENDERRORFREE - SENDS A PACKET AND WAITS FOR AN ACK FROM THE
RECEIVER. IF NO ACK, TIMES OUT AND RETRANSMITS UNTIL A
PACKET COMES OR IT HAS TRIED MAXCOUNT TIMES.
RETURNS THE TYPE OF PACKET RECEIVED, IF ONE WAS RECEIVED, OR
'NOTOK® IF NO PACKET RECEIVED AT ALL. >

PROCEDURE SENDERRORFREE(PACKET,LENGTH,RCVTYPE);
BYTE ARRAY PACKET; << PACKET TO BE SENT >>

INTEGER LENGTH; << LENGTH OF PACKET IN BYTES >>
INTEGER RCVTYPE; << RETURNS NOTOK, OR TYPE OF PACKET RECV'ED >>

BEGIN
BYTE ARRAY RCVPACK(0:50); << RECEIVED ACK PACKET >>
INTEGER RLENGTH; << LENGTH OF RECV'ED PACKET >>
INTEGER RCVFLAG; << FLAG RETURNED FROM 'RECVPACKET' >>
INTEGER XMITFLAG; << FLAG RETURNED FROM 'SENDPACKET' >>
INTEGER COUNT; << NUMBER OF XMIT ATTEMPTS >»

<< INIT. VARIABLES >>
COUNT := 03 .
RCVFLAG := NOTOK; -]

<< SEND THE PACKET, WAIT FOR ACK, RETRANSMIT UP TO MAXCOUNT >> _
WHILE RCVFLAG = NOTOK AND COUNT < MAXCOUNT DO i.#
BEGIN
SENDPACKET(PACKET, LENGTH, XMITFLAG) ;
RECVPACKET(RCVPACK, RLENGTH, RCVFLAG, TIMEOUT) ;
COUNT := COUNT + 1; 1

..

I 97
N o
S << CHECK IF A PACKET WAS RECEIVED >>
IF RCVFLAG = OK
THEN RCVTYPE := INTEGER(RCVPACK(2)) << RETURN TYPE >>
ELSE RCVTYPE := NOTOK;

' = END; << SENDERRORFREE >>
no << SENDAFILE - SENDS A FILE TO THE REMOTE MACHINE USING A STOP-
T AND-WAIT PROTOCOL WITH POSITIVE ACKNOWLEDGEMENT AND RETRANS-
S MISSION.
N ENTER THIS ROUTINE WITH THE FILE DESCRIPTOR (IE. THE FILE MUST
~ ALREADY BE OPENED) AND THE REMOTE MACHINE READY AND WAITING TO
- i RECEIVE THE FILE. >
s PROCEDURE SENDAFILE(FILENUM);

| INTEGER FILENUM; << FILE DESCRIPTOR OF OPENED FILE TO SEND >>
. . BEGIN
b BYTE ARRAY PACKET(0:PACKETSIZE); << PACKETS TO SEND >>
o INTEGER PACKLEN; << LENGTH OF PACKETS >>
2 INTEGER DATALEN; << LENGTH OF DATA PORTION >>

B INTEGER SEQNUM; << SEQUENCE NUMBER OF PACKETS >>
LR INTEGER ACKFLAG; << INDICATES IF PACKETS ARE BEING ACKED >>
- INTEGER EOF; << END OF FILE FLAG >>
Do INTEGER TEMP; << TEMPORARY >>
. ,';\
. << INIT VARIABLES >>
- SEQNUM := 1;
Lo ACKFLAG := ACKFILE;
EOF := PALS;
. << READ FIRST DATA RECORD >>
o DATALEN := FREAD(FILENUM,PACKET(6),-DATASIZE);

IF < << EOF OR ERROR >>
" THEN EOF := TRU;

<< XMIT PACKETS UNTIL END-OF-FILE >>

. WHILE EOF = FALS AND ACKFLAG = ACKFILE DO

Y BEGIN

. << ASSEMBLE AND SEND THE PACKET >>
ASSEM(DATAFILE, SEQNUM, DATALEN, PACKET, PACKLEN) ;

o SENDERRORFREE(PACKET, PACKLEN , ACKFLAG) ;

<< GET NEXT DATA RECORD >>
DATALEN := FREAD(FILENUM,PACKET(6),-DATASIZE);
IF < << EOF OR ERROR >>

THEN EOF i= TRU;

INCSEQ(SEQNUM) ;
END; << WHILE >»>

<< SEND 'ENDFILE', WAIT FOR ACK >>
ASSEM(ENDFILE,SEQNUM,0,PACKET, PACKLEN) ;
SENDERRORFREE(PACKET, PACKLEN, ACKFLAG) ;

<< SEND 'ENDREPLY', NO WAIT FOR ACK >>
INCSEQ(SEQNUM) ;
ASSEM(ENDREPLY, SEQNUM, 0, PACKET, PACKLEN) ;
SENDPACKET(PACKET, PACKLEN, TEMP) ;

END; << SENDAFILE >>

<< HP'IS'SOURCE -~ SENDS A FILE FROM THE HP TO THE REMOTE MACHINE
USING THE 'SENDAFILE' ROUTINE AFTER CHECKING TO MAKE SURE THE
FILE REALLY EXISTS. IF IT DOESN'T, IT SENDS A 'NAKFILE' TO
THE REMOTE MACHINE.
THE FILENAME PASSED AS AN ARGUMENT SHOULD END IN A *;' TO MAKE
THE FILE SYSTEM HAPPY. >>

PROCEDURE HP'IS'SOURCE(FILENAME);

BYTE ARRAY FILENAME; << NAME OF FILE TO SEND >>

BEGIN
INTEGER FILENUM; << FILE DESCRIPTOR RETURNED BY FOPEN >>
BYTE ARRAY PACKET(0:20); << PACKET USED TO ACK OR NAK >»
INTEGER PACKLEN; << LENGTH OF PACKET >»
INTEGER XMITFLAG; << FLAG RETURNED BY 'SENDPACKET' >

<< OPEN THE FILE, IF IT EXISTS >>
FILENUM := FOPEN(FILENAME,$7,0,-DATASIZE);

IF < << ERROR, FILE NOT OPENED (DOESN'T EXIST) >>
THEN BEGIN << SEND *NAKFILE' PACKET >>
ASSEM(NAKFILE,0,0,PACKET, PACKLEN) ;
SENDPACKET(PACKET, PACKLEN, XMITFLAG) ;

.f END << THEN >>

) ELSE BEGIN << SEND 'ACKFILE' AND SEND THE FILE >>
ASSEM(ACKFILE,0,0,PACKET,PACKLEN) ;
SENDPACYET(PACKET, PACKLEN, XMITFLAG) ;

SENDAFILE(FILENUM) ;
FCLOSE(FILENUM,0,0);
- END; << ELSE »
END; << HP'IS'SOURCE >>
& << RECVAFILE - RECEIVES A FILE FROM THE REMOTE MACHINE USING A

STOP-AND-WAIT PROTOCOL. ACKS ALL RECEIVED PACKETS AND SAVES
NON-DUPLICATED PACKETS.

ENTER THIS ROUTINE WITH THE FILE DESCRIPTOR (IE. THE FILE MUST
ALREADY BE OPENED) AND THE REMOTE MACHINE ALL READY TO BEGIN
SENDING DATA PACKETS. >

PROCEDURE RECVAFILE(FILENUM);

- INTEGER FILENUM; << FILE NUMBER OF OPENED FILE IN WHICH

= TO STORE THE INCOMING PACKETS >

n BEGIN

5 BYTE ARRAY PACKET(O0:PACKETSIZE); << RECEIVED PACKET >>
INTEGER PACKLEN; << LENGTH OF RECEIVED PACKET >>
INTEGER RCVFLAG; << STATUS OF RECEIVED PACKET >>
INTEGER PACKTYPE; << TYPE OF RECEIVED PACKET >>
INTEGER DATALEN; << LENGTH OF DATA PORTION >>

_ INTEGER SEQNUM; << SEQUENCE NUMBER OF PACKET >>

‘ INTEGER EXPECTNUM; << EXPECTED SEQUENCE NUMBER >>

INTEGER DONEFLAG; << INDICATES WHEN FINISHED >>
INTEGER XMITFLAG; << FLAG RETURNED BY SENDPACKET >>

G << INIT. VARIABLES >>

PACKTYPE := DATAFILE;
EXPECTNUM := 1;

<< RECEIVE, ACK, AND STORE PACKETS UNTIL 'ENDFILE' RECEIVED >>
WHILE PACKTYPE = DATAFILE DO

BEGIN
L RECVPACKET(PACKET, PACKLEN, RCVFLAG, TIMEOUT) ;
IF RCVFLAG = OK << PACKET RECEIVED OK >>
THEN BEGIN

DISASSEM(PACKET, PACKTYPE, SEQNUM,DATALEN) ;

L - ry P k3 e " P NP W PP ¥ NPT P PR Y Shir N S TR LR ST R WM YR G G P S |

-y e

100

<< IF DATA PACKET AND NOT A DUPLICATE >>
IF PACKTYPE = DATAFILE AND SEQNUM = EXPECTNUM
THEN BEGIN << SAVE PACKET AND INCREMENT EXPECTNUM >>
FWRITE(FILENUM,PACKET(6) ,~DATALEN,%320);
INCSEQ(EXPECTNUM) ;
END; << THEN >>

<< ACK THE PACKET >>
ASSEM(ACKFILE, SEQNUM,0,FACKET,PACKLEN) ;
SENDPACKET(PACKET, PACKLEN,XMITFLAG) ;
END; << THEN »
END; << WHILE »

<< PERFORM END-DALLY SEQUENCE OF PROTOCOL:
WAIT FOR 'ENDREPLY' (TO 'ACK' OF 'ENDFILE') OR TIMEOUT,
WHICHEVER COMES FIRST. TIMEOUT OR 'ENDREPLY' BOTH MEAN
DONE. IF RECV'ED PACKET IS 'ENDFILE', SENDER DIDN'T GET
LAST ACK, SO RETRANSMIT IT. >

DONEFLAG := FALS;

WHILE DONEFLAG = FALS DO << WAIT FOR TIMEOUT OR ENDREPLY >>
BEGIN
RECVPACKET(PACKET, PACKLEN, RCVFLAG, TIMEOUT) ;
IF RCVFLAG = OK << SOME PACKET RECV'ED OK >>
THEN BEGIN << SEE WHAT KIND OF PACKET IT IS >>
DISASSEM(PACKET, PACKTYPE, SEQNUM, DATALEN) ;
IF PACKTYPE = ENDREPLY << GOT ACK, SO DONE >>
THEN DONEFLAG := TRU =
ELSE BEGIN << RETRANSMIT THE ACK >> Cu
ASSEM(ACKFILE, SEQNUM, 0, PACKET, PACKLEN) ;
SENDPACKET(PACKET, PACKLEN, XMITFLAG) ;
END; << ELSE >>
END << THEN >>
ELSE << TIMED OUT, SO DONE >>
DONEFLAG := TRU;
END; << WHILE >>

L tee s
Ty
el

leaa

END; << RECVAFILE >>

<< HP'IS'DEST - RECEIVES A FILE FROM THE REMOTE MACHINE USING THE s
'RECVAFILE' ROUTINE AND SAVE IT ON DISK. IF A FILE WITH THE Ty
SAME NAME ALREADY EXISTS, THIS ROUTINE WILL RENAME THE FILE,

e e o B e, e o B PRI T, S, S T, WP R N PSR U PO VLI S TR S W S UL D - PP

101

THEN SAVE IT.
THE FILENAME GIVEN AS AN ARGUMENT SHOULD BE TERMINATED WITH
A ';' TO MAKE THE FILE SYSTEM HAPPY. >»

PROCEDURE HP'IS'DEST(FILENAME);

BYTE ARRAY FILENAME; << NAME TO CALL RECEIVED FILE >>

BEGIN
INTEGER FILENUM; << FILE DESCRIPTOR RETURNED BY FOPEN >>
BYTE ARRAY PACKET(0:20); << PACKET USED TO ACK >
INTEGER PACKLEN; << LENGTH OF PACKET >
INTEGER XMITFLAG; << FLAG RETURNED BY 'SENDPACKET' >

<< OPEN THE FILE AS A 'NEW' FILE >>
FILENUM := FOPEN(FILENAME,%4,%101,-DATASIZE);

IF O << COULDN'T OPEN THE FILE >>
THEN BEGIN
MOVE MSGB := "ETHERNET - CAN'T OPEN A NEW FILE";
PRINTOP(MsSG,~32,0) ;

END << THEN >>

ELSE BEGIN
<< ACK THE 'RECFILE' PACKET >»>
ASSEM(ACKFILE,0,0,PACKET,PACKLEN) ;
SENDPACKET(PACKET, PACKLEN, XMITFLAG) ;

<< RECEIVE THE FILE >>
RECVAFILE(FILENUM);

<< CLOSE THE FILE AS A PERMANENT FILE >>
FCLOSE(FILENUM,1,0);
IF O << FILE NOT CLOSED >>
THEN BEGIN << RENAME THE FILE >>
RENAME (FILENUM,FILENAME) ;
FCLOSE(FILENUM,1,0);
END; << THEN >>
END; << ELSE >>

END; << HP'IS'DEST >

! : 102

<<...l.....'.l‘.l.. MAIN PRWRM OO..........I....O...'.....))

<< MAIN PROGRAM (NETWORK DEMON) - LISTENS FOR A COMMAND PACKET ON THE
ETHERNET. IF TYPE OF PACKET IS 'SENDFILE', IT CONTAINS THE
NAME OF A FILE FOR THE HP TO SEND TO THE REMOTE MACHINE. IF THE
TYPE OF PACKET IS 'RECFILE', IT MEANS THE HP SHOULD PREPARE TO
RECEIVE A FILE FROM THE REMOTE MACHINE AND STORE IT WITH THE NAME IN
THE DATA PORTION OF THE PACKET. >»

<< INIT. CONTROLLER'S I/O PORTS, INIT. STATION ADDRESSES, ETC. >>
MOVE MSGB := "ETHERNET IS INITIALIZING";

PRINTOP(MSG,-24,0) ;

INITIALIZE;

RENAMENUM := 0; << INITIALIZE IT >>

<< LOOP FOREVER >>
WHILE TRU DO
BEGIN

<< WAIT FOREVER UNTIL A PACKET ARRIVES ON NET >>
RECVPACKET(COMPACK, COMLENGTH , RFLAG, NOTIMEOUT) ;

IF RFLAG = OK << PACKET RECV'ED OK >>
THEN BEGIN
<< DISASSEMBLE THE PACKET >>
DISASSEM(COMPACK ,COMTYPE , COMSEQNUM, NAMELEN) ;

<< TERMINATE FILE NAME WITH A ';* FOR THE FILE SYSTEM >>
COMPACK(COMLENGTH) := ";";

|

<< SEND OR RECEIVE THE FILE AS APPROPRIATE, SUPPLYING THE >>
<< FILE NAME AS AN ARGUMENT >
IF COMTYPE = RECFILE
THEN HP'IS'DEST(COMPACK(6))
ELSE
IF COMTYPE = SENDFILE
THEN HP'I1S'SOURCE(COMPACK(6)) g
ELSE BEGIN << ERROR >>
MOVE MSGB := "ETHERENT - RECEIVED UNKNOWN COMMAND";)
PRINTOP(MSG, -35,0) ;]
END; << ELSE »>
END; << THEN >>
END; << WHILE >> .

L.

Sl

Y

LA™ et T T e e T T . e e S e . LT . . R e e . L
At aba® NN am P o Y sadeates.r WP - - = - "~ I 2 e a2 g . - W WA S AT T e : L P WY W

END.

<< MAIN >>

'''''''

L gt
LIPS

103

s d

104

Appendix 5

Listing of STARTNET.LILJA.SYS

.......................
.........
. . . o

C P — — -
......

105

1JOB ETHERNET.SYS

IPREPRUN ETHERRUN.LILJA.SYS;CAP=PM
‘e . ! EOJ

106

REFERENCES

1. A. S. Tanenbaum, Computer MNetworks, Prentice-Hall, Englewood

2. H. J. Saal, "Local Area Networks: Possibilities for Personal Com-
puters,®™ BYTE, Vol. 6, (10) p. 92 (October 1981).

3. R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed Packet

Switching for Local Computer Networks," Communications of the ACM,
Vol. 19, (7) pp. 395-404 (July 1976).

4, R. Binder, R. Abramson, and F. Kuo, "Aloha Packet Broadcasting - A

Retrospect," Proceedings of the AFIPS National Computer Conference,
pp. 203-215 (June 1975).

5. J. A. Ayala, Design and Construction of an Ethernet Communications
Controller for a Non-homogepeous Enviropmenk, Computer Systems
Group report CSG-5, Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, (July 1982).

6. B. W. Kernighan and D. M. Ritchie, The C Programming lLanguage, Bell
Laboratories, Englewood Cliffs, NJ (1978).

T. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell
Laboratories (January 1979). Seventh Edition.

8. Syatems Programming language Reference Manual, Hewlett-Packard Com-
pany, Santa Clara, CA (1976). Second Edition.

9. MPE Intrinsics Reference Manual, Hewlett-Packard Company, Cuper-
. tino, CA (January 1981). Third Edition.

10. E, C. Eschenauer and V. Obozinski, "The Network Communication
Manager: A Transport Station for the SGB Network," Computer Net-

3 works, Vol. 2, (4) pp. 236-249 (September 1978).
- 11. Syatep Manager/Svstem Supervisor Reference Manual, Hewlett-Packard .
. Company, Cupertino, CA (1979). Third Edition. 5

12. J. F. Shoch and J. A. Hupp, "Measured Performance of an Ethernet

LocaJ)L Network," Local Area Communications Network Symposium, (May B
1979). e

N PR DR IR u A PPN LIRS W T GOt ST S S PP Pt 'AA

